This paper introduces the multiple signal classification (MUSIC) method that utilizes the transfer characteristics of microphones located at the same place, namely aggregated microphones. The conventional microphone array realizes a sound localization system according to the differences in the arrival time, phase shift, and the level of the sound wave among each microphone. Therefore, it is difficult to miniaturize the microphone array. The objective of our research is to build a reliable miniaturized sound localization system using aggregated microphones. In this paper, we describe a sound system with N microphones. We then show that the microphone array system and the proposed aggregated microphone system can be described in the same framework. We apply the multiple signal classification to the method that utilizes the transfer characteristics of the microphones placed at a same location and compare the proposed method with the microphone array. In the proposed method, all microphones are placed at the same place. Hence, it is easy to miniaturize the system. This feature is considered to be useful for practical applications. The experimental results obtained in an ordinary room are shown to verify the validity of the measurement.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Mitsuharu MATSUMOTO, Shuji HASHIMOTO, "Multiple Signal Classification by Aggregated Microphones" in IEICE TRANSACTIONS on Fundamentals,
vol. E88-A, no. 7, pp. 1701-1707, July 2005, doi: 10.1093/ietfec/e88-a.7.1701.
Abstract: This paper introduces the multiple signal classification (MUSIC) method that utilizes the transfer characteristics of microphones located at the same place, namely aggregated microphones. The conventional microphone array realizes a sound localization system according to the differences in the arrival time, phase shift, and the level of the sound wave among each microphone. Therefore, it is difficult to miniaturize the microphone array. The objective of our research is to build a reliable miniaturized sound localization system using aggregated microphones. In this paper, we describe a sound system with N microphones. We then show that the microphone array system and the proposed aggregated microphone system can be described in the same framework. We apply the multiple signal classification to the method that utilizes the transfer characteristics of the microphones placed at a same location and compare the proposed method with the microphone array. In the proposed method, all microphones are placed at the same place. Hence, it is easy to miniaturize the system. This feature is considered to be useful for practical applications. The experimental results obtained in an ordinary room are shown to verify the validity of the measurement.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e88-a.7.1701/_p
Copy
@ARTICLE{e88-a_7_1701,
author={Mitsuharu MATSUMOTO, Shuji HASHIMOTO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Multiple Signal Classification by Aggregated Microphones},
year={2005},
volume={E88-A},
number={7},
pages={1701-1707},
abstract={This paper introduces the multiple signal classification (MUSIC) method that utilizes the transfer characteristics of microphones located at the same place, namely aggregated microphones. The conventional microphone array realizes a sound localization system according to the differences in the arrival time, phase shift, and the level of the sound wave among each microphone. Therefore, it is difficult to miniaturize the microphone array. The objective of our research is to build a reliable miniaturized sound localization system using aggregated microphones. In this paper, we describe a sound system with N microphones. We then show that the microphone array system and the proposed aggregated microphone system can be described in the same framework. We apply the multiple signal classification to the method that utilizes the transfer characteristics of the microphones placed at a same location and compare the proposed method with the microphone array. In the proposed method, all microphones are placed at the same place. Hence, it is easy to miniaturize the system. This feature is considered to be useful for practical applications. The experimental results obtained in an ordinary room are shown to verify the validity of the measurement.},
keywords={},
doi={10.1093/ietfec/e88-a.7.1701},
ISSN={},
month={July},}
Copy
TY - JOUR
TI - Multiple Signal Classification by Aggregated Microphones
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1701
EP - 1707
AU - Mitsuharu MATSUMOTO
AU - Shuji HASHIMOTO
PY - 2005
DO - 10.1093/ietfec/e88-a.7.1701
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E88-A
IS - 7
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - July 2005
AB - This paper introduces the multiple signal classification (MUSIC) method that utilizes the transfer characteristics of microphones located at the same place, namely aggregated microphones. The conventional microphone array realizes a sound localization system according to the differences in the arrival time, phase shift, and the level of the sound wave among each microphone. Therefore, it is difficult to miniaturize the microphone array. The objective of our research is to build a reliable miniaturized sound localization system using aggregated microphones. In this paper, we describe a sound system with N microphones. We then show that the microphone array system and the proposed aggregated microphone system can be described in the same framework. We apply the multiple signal classification to the method that utilizes the transfer characteristics of the microphones placed at a same location and compare the proposed method with the microphone array. In the proposed method, all microphones are placed at the same place. Hence, it is easy to miniaturize the system. This feature is considered to be useful for practical applications. The experimental results obtained in an ordinary room are shown to verify the validity of the measurement.
ER -