A multiple-source system for rendering the sound pressure distribution in a target region can be modeled as a multi-input-multi-output (MIMO) system with the inputs being the source strengths and the outputs being the pressures on multiple measuring points/sensors. In this paper, we propose a target-oriented acoustic radiation generation technique (TARGET) for sound field control. For the MIMO system of a given geometry, a series of basic radiation modes, namely, target-oriented radiation modes (TORMs) can be derived using eigenvector analysis. Different TORMs have different contributions to the system control gain, which is defined as the ratio of the acoustic energy generated in the target zone to the transmitter output power. The TARGET can be effectively applied to the sound reproduction and suppression, which correspond the generations of bright and dark zone respectively. In acoustically bright zone generation and sound beamforming, the highest-gain TORM can be employed to determine the optimal source strengths. In active noise control, the strengths of the secondary sources can be derived using low-gain TORMs. Simulation results show that the proposed method has better or comparable performance than the traditional techniques.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yuan WEN, Jun YANG, Woon-Seng GAN, "Target-Oriented Acoustic Radiation Generation Technique for Sound Field Control" in IEICE TRANSACTIONS on Fundamentals,
vol. E89-A, no. 12, pp. 3671-3677, December 2006, doi: 10.1093/ietfec/e89-a.12.3671.
Abstract: A multiple-source system for rendering the sound pressure distribution in a target region can be modeled as a multi-input-multi-output (MIMO) system with the inputs being the source strengths and the outputs being the pressures on multiple measuring points/sensors. In this paper, we propose a target-oriented acoustic radiation generation technique (TARGET) for sound field control. For the MIMO system of a given geometry, a series of basic radiation modes, namely, target-oriented radiation modes (TORMs) can be derived using eigenvector analysis. Different TORMs have different contributions to the system control gain, which is defined as the ratio of the acoustic energy generated in the target zone to the transmitter output power. The TARGET can be effectively applied to the sound reproduction and suppression, which correspond the generations of bright and dark zone respectively. In acoustically bright zone generation and sound beamforming, the highest-gain TORM can be employed to determine the optimal source strengths. In active noise control, the strengths of the secondary sources can be derived using low-gain TORMs. Simulation results show that the proposed method has better or comparable performance than the traditional techniques.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e89-a.12.3671/_p
Copy
@ARTICLE{e89-a_12_3671,
author={Yuan WEN, Jun YANG, Woon-Seng GAN, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Target-Oriented Acoustic Radiation Generation Technique for Sound Field Control},
year={2006},
volume={E89-A},
number={12},
pages={3671-3677},
abstract={A multiple-source system for rendering the sound pressure distribution in a target region can be modeled as a multi-input-multi-output (MIMO) system with the inputs being the source strengths and the outputs being the pressures on multiple measuring points/sensors. In this paper, we propose a target-oriented acoustic radiation generation technique (TARGET) for sound field control. For the MIMO system of a given geometry, a series of basic radiation modes, namely, target-oriented radiation modes (TORMs) can be derived using eigenvector analysis. Different TORMs have different contributions to the system control gain, which is defined as the ratio of the acoustic energy generated in the target zone to the transmitter output power. The TARGET can be effectively applied to the sound reproduction and suppression, which correspond the generations of bright and dark zone respectively. In acoustically bright zone generation and sound beamforming, the highest-gain TORM can be employed to determine the optimal source strengths. In active noise control, the strengths of the secondary sources can be derived using low-gain TORMs. Simulation results show that the proposed method has better or comparable performance than the traditional techniques.},
keywords={},
doi={10.1093/ietfec/e89-a.12.3671},
ISSN={1745-1337},
month={December},}
Copy
TY - JOUR
TI - Target-Oriented Acoustic Radiation Generation Technique for Sound Field Control
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 3671
EP - 3677
AU - Yuan WEN
AU - Jun YANG
AU - Woon-Seng GAN
PY - 2006
DO - 10.1093/ietfec/e89-a.12.3671
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E89-A
IS - 12
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - December 2006
AB - A multiple-source system for rendering the sound pressure distribution in a target region can be modeled as a multi-input-multi-output (MIMO) system with the inputs being the source strengths and the outputs being the pressures on multiple measuring points/sensors. In this paper, we propose a target-oriented acoustic radiation generation technique (TARGET) for sound field control. For the MIMO system of a given geometry, a series of basic radiation modes, namely, target-oriented radiation modes (TORMs) can be derived using eigenvector analysis. Different TORMs have different contributions to the system control gain, which is defined as the ratio of the acoustic energy generated in the target zone to the transmitter output power. The TARGET can be effectively applied to the sound reproduction and suppression, which correspond the generations of bright and dark zone respectively. In acoustically bright zone generation and sound beamforming, the highest-gain TORM can be employed to determine the optimal source strengths. In active noise control, the strengths of the secondary sources can be derived using low-gain TORMs. Simulation results show that the proposed method has better or comparable performance than the traditional techniques.
ER -