In this paper, we propose an image enlargement method by using morphological operators. Our enlargement method is based on the nonlinear frequency extrapolation method (Greenspan et al., 2000) by using a Laplacian pyramid image representation. In this method, the sampling process of input images is modeled as the Laplacian pyramid. A high resolution image is obtained with the finer scale Laplacian that is extrapolated by a nonlinear operation from a low resolution Laplacian. In this paper, we propose a novel nonlinear operation for extrapolation of the finer scale Laplacian. Our nonlinear operation is realized by morphological operators and is capable of generating the finer scale Laplacian, the amplitude of which is proportional to contrasts of edges that appear in the low resolution image. In experiments, the enlargement results given by the proposed method are demonstrated. Compared with the Greenspan's method, the proposed method can recover sharp intensity transients of image edges with small artifacts.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Masayuki SHIMIZU, Makoto NAKASHIZUKA, Youji IIGUNI, "Image Enlargement by Nonlinear Frequency Extrapolation with Morphological Operators" in IEICE TRANSACTIONS on Fundamentals,
vol. E91-A, no. 3, pp. 859-867, March 2008, doi: 10.1093/ietfec/e91-a.3.859.
Abstract: In this paper, we propose an image enlargement method by using morphological operators. Our enlargement method is based on the nonlinear frequency extrapolation method (Greenspan et al., 2000) by using a Laplacian pyramid image representation. In this method, the sampling process of input images is modeled as the Laplacian pyramid. A high resolution image is obtained with the finer scale Laplacian that is extrapolated by a nonlinear operation from a low resolution Laplacian. In this paper, we propose a novel nonlinear operation for extrapolation of the finer scale Laplacian. Our nonlinear operation is realized by morphological operators and is capable of generating the finer scale Laplacian, the amplitude of which is proportional to contrasts of edges that appear in the low resolution image. In experiments, the enlargement results given by the proposed method are demonstrated. Compared with the Greenspan's method, the proposed method can recover sharp intensity transients of image edges with small artifacts.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e91-a.3.859/_p
Copy
@ARTICLE{e91-a_3_859,
author={Masayuki SHIMIZU, Makoto NAKASHIZUKA, Youji IIGUNI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Image Enlargement by Nonlinear Frequency Extrapolation with Morphological Operators},
year={2008},
volume={E91-A},
number={3},
pages={859-867},
abstract={In this paper, we propose an image enlargement method by using morphological operators. Our enlargement method is based on the nonlinear frequency extrapolation method (Greenspan et al., 2000) by using a Laplacian pyramid image representation. In this method, the sampling process of input images is modeled as the Laplacian pyramid. A high resolution image is obtained with the finer scale Laplacian that is extrapolated by a nonlinear operation from a low resolution Laplacian. In this paper, we propose a novel nonlinear operation for extrapolation of the finer scale Laplacian. Our nonlinear operation is realized by morphological operators and is capable of generating the finer scale Laplacian, the amplitude of which is proportional to contrasts of edges that appear in the low resolution image. In experiments, the enlargement results given by the proposed method are demonstrated. Compared with the Greenspan's method, the proposed method can recover sharp intensity transients of image edges with small artifacts.},
keywords={},
doi={10.1093/ietfec/e91-a.3.859},
ISSN={1745-1337},
month={March},}
Copy
TY - JOUR
TI - Image Enlargement by Nonlinear Frequency Extrapolation with Morphological Operators
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 859
EP - 867
AU - Masayuki SHIMIZU
AU - Makoto NAKASHIZUKA
AU - Youji IIGUNI
PY - 2008
DO - 10.1093/ietfec/e91-a.3.859
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E91-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 2008
AB - In this paper, we propose an image enlargement method by using morphological operators. Our enlargement method is based on the nonlinear frequency extrapolation method (Greenspan et al., 2000) by using a Laplacian pyramid image representation. In this method, the sampling process of input images is modeled as the Laplacian pyramid. A high resolution image is obtained with the finer scale Laplacian that is extrapolated by a nonlinear operation from a low resolution Laplacian. In this paper, we propose a novel nonlinear operation for extrapolation of the finer scale Laplacian. Our nonlinear operation is realized by morphological operators and is capable of generating the finer scale Laplacian, the amplitude of which is proportional to contrasts of edges that appear in the low resolution image. In experiments, the enlargement results given by the proposed method are demonstrated. Compared with the Greenspan's method, the proposed method can recover sharp intensity transients of image edges with small artifacts.
ER -