In this paper we present a method to generate test sequences for stuck-at faults in sequential circuits which have distinguishing sequences. Since the circuit may have no distinguishing sequence, we use two design techniques for circuits which have distinguishing sequences. One is at state transition level and the other is at gate level. In our proposed method complete test sequence can be generated. The sequence consists of test vectors for the combinational part of the circuit, distinguishing sequences and transition sequences. The test vectors, which are generated by a combinational test generator, cause faulty staes or faulty output responses for a fault, and disinguishing sequences identify the differences between faulty states and fault free states. Transition sequences are necessary to make the state in the combinational vectors. And the distinguishing sequence and the transition sequence are used in the initializing sequence. Some techniques for shortening the test sequence is also proposed. The basic ideas of the techniques are to use a short initializing sequence and to find the order in concatenating sequences. But fault simulation is conducted so as not to miss any faults. The initializing sequence is obtained by using a distinguishing sequence. The efficiency of our method is shown in the experimental results for benchmark circuits.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yoshinobu HIGAMI, Seiji KAJIHARA, Kozo KINOSHITA, "Test Sequence Generation for Sequential Circuits with Distinguishing Sequences" in IEICE TRANSACTIONS on Fundamentals,
vol. E76-A, no. 10, pp. 1730-1737, October 1993, doi: .
Abstract: In this paper we present a method to generate test sequences for stuck-at faults in sequential circuits which have distinguishing sequences. Since the circuit may have no distinguishing sequence, we use two design techniques for circuits which have distinguishing sequences. One is at state transition level and the other is at gate level. In our proposed method complete test sequence can be generated. The sequence consists of test vectors for the combinational part of the circuit, distinguishing sequences and transition sequences. The test vectors, which are generated by a combinational test generator, cause faulty staes or faulty output responses for a fault, and disinguishing sequences identify the differences between faulty states and fault free states. Transition sequences are necessary to make the state in the combinational vectors. And the distinguishing sequence and the transition sequence are used in the initializing sequence. Some techniques for shortening the test sequence is also proposed. The basic ideas of the techniques are to use a short initializing sequence and to find the order in concatenating sequences. But fault simulation is conducted so as not to miss any faults. The initializing sequence is obtained by using a distinguishing sequence. The efficiency of our method is shown in the experimental results for benchmark circuits.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1587/e76-a_10_1730/_p
Copy
@ARTICLE{e76-a_10_1730,
author={Yoshinobu HIGAMI, Seiji KAJIHARA, Kozo KINOSHITA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Test Sequence Generation for Sequential Circuits with Distinguishing Sequences},
year={1993},
volume={E76-A},
number={10},
pages={1730-1737},
abstract={In this paper we present a method to generate test sequences for stuck-at faults in sequential circuits which have distinguishing sequences. Since the circuit may have no distinguishing sequence, we use two design techniques for circuits which have distinguishing sequences. One is at state transition level and the other is at gate level. In our proposed method complete test sequence can be generated. The sequence consists of test vectors for the combinational part of the circuit, distinguishing sequences and transition sequences. The test vectors, which are generated by a combinational test generator, cause faulty staes or faulty output responses for a fault, and disinguishing sequences identify the differences between faulty states and fault free states. Transition sequences are necessary to make the state in the combinational vectors. And the distinguishing sequence and the transition sequence are used in the initializing sequence. Some techniques for shortening the test sequence is also proposed. The basic ideas of the techniques are to use a short initializing sequence and to find the order in concatenating sequences. But fault simulation is conducted so as not to miss any faults. The initializing sequence is obtained by using a distinguishing sequence. The efficiency of our method is shown in the experimental results for benchmark circuits.},
keywords={},
doi={},
ISSN={},
month={October},}
Copy
TY - JOUR
TI - Test Sequence Generation for Sequential Circuits with Distinguishing Sequences
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1730
EP - 1737
AU - Yoshinobu HIGAMI
AU - Seiji KAJIHARA
AU - Kozo KINOSHITA
PY - 1993
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E76-A
IS - 10
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - October 1993
AB - In this paper we present a method to generate test sequences for stuck-at faults in sequential circuits which have distinguishing sequences. Since the circuit may have no distinguishing sequence, we use two design techniques for circuits which have distinguishing sequences. One is at state transition level and the other is at gate level. In our proposed method complete test sequence can be generated. The sequence consists of test vectors for the combinational part of the circuit, distinguishing sequences and transition sequences. The test vectors, which are generated by a combinational test generator, cause faulty staes or faulty output responses for a fault, and disinguishing sequences identify the differences between faulty states and fault free states. Transition sequences are necessary to make the state in the combinational vectors. And the distinguishing sequence and the transition sequence are used in the initializing sequence. Some techniques for shortening the test sequence is also proposed. The basic ideas of the techniques are to use a short initializing sequence and to find the order in concatenating sequences. But fault simulation is conducted so as not to miss any faults. The initializing sequence is obtained by using a distinguishing sequence. The efficiency of our method is shown in the experimental results for benchmark circuits.
ER -