This paper presents an efficient algorithm for constructing at-most-k levels of an arrangement of n lines in the plane in time O(nk+n log n), which is optimal since Ω(nk) line segments are included there. The algorithm can sweep the at-most-k levels of the arrangement using O(n) space. Although Everett et al. recently gave an algorithm for constructing the at-most-k levels with the same time complexity independently, our algorithm is superior with respect to the space complexity as a sweep algorithm. Then, we apply the algorithm to a bipartitioning problem of a bichromatic point set: For r red points and b blue points in the plane and a directed line L, the figure of demerit fd(L) associated with L is defined to be the sum of the number of blue points below L and that of red ones above L. The problem we are going to consider is to find an optimal partitioning line to minimize the figure of demerit. Given a number k, our algorithm first determines whether there is a line whose figure of demerit is at most k, and further finds an optimal bipartitioning line if there is one. It runs in O(kn+n log n) time (n=r+b), which is subquadratic if k is sublinear.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Tetsuo ASANO, Takeshi TOKUYAMA, "Partial Construction of an Arrangement of Lines and Its Application to Optimal Partitioning of Bichromatic Point Set" in IEICE TRANSACTIONS on Fundamentals,
vol. E77-A, no. 4, pp. 595-600, April 1994, doi: .
Abstract: This paper presents an efficient algorithm for constructing at-most-k levels of an arrangement of n lines in the plane in time O(nk+n log n), which is optimal since Ω(nk) line segments are included there. The algorithm can sweep the at-most-k levels of the arrangement using O(n) space. Although Everett et al. recently gave an algorithm for constructing the at-most-k levels with the same time complexity independently, our algorithm is superior with respect to the space complexity as a sweep algorithm. Then, we apply the algorithm to a bipartitioning problem of a bichromatic point set: For r red points and b blue points in the plane and a directed line L, the figure of demerit fd(L) associated with L is defined to be the sum of the number of blue points below L and that of red ones above L. The problem we are going to consider is to find an optimal partitioning line to minimize the figure of demerit. Given a number k, our algorithm first determines whether there is a line whose figure of demerit is at most k, and further finds an optimal bipartitioning line if there is one. It runs in O(kn+n log n) time (n=r+b), which is subquadratic if k is sublinear.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1587/e77-a_4_595/_p
Copy
@ARTICLE{e77-a_4_595,
author={Tetsuo ASANO, Takeshi TOKUYAMA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Partial Construction of an Arrangement of Lines and Its Application to Optimal Partitioning of Bichromatic Point Set},
year={1994},
volume={E77-A},
number={4},
pages={595-600},
abstract={This paper presents an efficient algorithm for constructing at-most-k levels of an arrangement of n lines in the plane in time O(nk+n log n), which is optimal since Ω(nk) line segments are included there. The algorithm can sweep the at-most-k levels of the arrangement using O(n) space. Although Everett et al. recently gave an algorithm for constructing the at-most-k levels with the same time complexity independently, our algorithm is superior with respect to the space complexity as a sweep algorithm. Then, we apply the algorithm to a bipartitioning problem of a bichromatic point set: For r red points and b blue points in the plane and a directed line L, the figure of demerit fd(L) associated with L is defined to be the sum of the number of blue points below L and that of red ones above L. The problem we are going to consider is to find an optimal partitioning line to minimize the figure of demerit. Given a number k, our algorithm first determines whether there is a line whose figure of demerit is at most k, and further finds an optimal bipartitioning line if there is one. It runs in O(kn+n log n) time (n=r+b), which is subquadratic if k is sublinear.},
keywords={},
doi={},
ISSN={},
month={April},}
Copy
TY - JOUR
TI - Partial Construction of an Arrangement of Lines and Its Application to Optimal Partitioning of Bichromatic Point Set
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 595
EP - 600
AU - Tetsuo ASANO
AU - Takeshi TOKUYAMA
PY - 1994
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E77-A
IS - 4
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - April 1994
AB - This paper presents an efficient algorithm for constructing at-most-k levels of an arrangement of n lines in the plane in time O(nk+n log n), which is optimal since Ω(nk) line segments are included there. The algorithm can sweep the at-most-k levels of the arrangement using O(n) space. Although Everett et al. recently gave an algorithm for constructing the at-most-k levels with the same time complexity independently, our algorithm is superior with respect to the space complexity as a sweep algorithm. Then, we apply the algorithm to a bipartitioning problem of a bichromatic point set: For r red points and b blue points in the plane and a directed line L, the figure of demerit fd(L) associated with L is defined to be the sum of the number of blue points below L and that of red ones above L. The problem we are going to consider is to find an optimal partitioning line to minimize the figure of demerit. Given a number k, our algorithm first determines whether there is a line whose figure of demerit is at most k, and further finds an optimal bipartitioning line if there is one. It runs in O(kn+n log n) time (n=r+b), which is subquadratic if k is sublinear.
ER -