The present paper deals with the blind deconvolution of a Multiple-Input Multiple-Output Finite Impulse Response (MIMO-FIR) system. To deal with the blind deconvolution problem using the second-order statistics (SOS) of the outputs, Hua and Tugnait considered it under the conditions that a) the FIR system is irreducible and b) the input signals are spatially uncorrelated and have distinct power spectra. In the present paper, the problem is considered under a weaker condition than the condition a). Namely, we assume that c) the FIR system is equalizable by means of the SOS of the outputs. Under b) and c), we show that the system can be blindly identified up to a permutation, a scaling, and a delay using the SOS of the outputs. Moreover, based on this identifiability, we show a novel necessary and sufficiently condition for solving the blind deconvolution problem, and then, based on the condition, we propose a new algorithm for finding an equalizer using the SOS of the outputs, while Hua and Tugnait have not proposed any algorithm for solving the blind deconvolution under the conditions a) and b).
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Mitsuru KAWAMOTO, Yujiro INOUYE, "Blind Deconvolution of MIMO-FIR Systems with Colored Inputs Using Second-Order Statistics" in IEICE TRANSACTIONS on Fundamentals,
vol. E86-A, no. 3, pp. 597-604, March 2003, doi: .
Abstract: The present paper deals with the blind deconvolution of a Multiple-Input Multiple-Output Finite Impulse Response (MIMO-FIR) system. To deal with the blind deconvolution problem using the second-order statistics (SOS) of the outputs, Hua and Tugnait considered it under the conditions that a) the FIR system is irreducible and b) the input signals are spatially uncorrelated and have distinct power spectra. In the present paper, the problem is considered under a weaker condition than the condition a). Namely, we assume that c) the FIR system is equalizable by means of the SOS of the outputs. Under b) and c), we show that the system can be blindly identified up to a permutation, a scaling, and a delay using the SOS of the outputs. Moreover, based on this identifiability, we show a novel necessary and sufficiently condition for solving the blind deconvolution problem, and then, based on the condition, we propose a new algorithm for finding an equalizer using the SOS of the outputs, while Hua and Tugnait have not proposed any algorithm for solving the blind deconvolution under the conditions a) and b).
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1587/e86-a_3_597/_p
Copy
@ARTICLE{e86-a_3_597,
author={Mitsuru KAWAMOTO, Yujiro INOUYE, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Blind Deconvolution of MIMO-FIR Systems with Colored Inputs Using Second-Order Statistics},
year={2003},
volume={E86-A},
number={3},
pages={597-604},
abstract={The present paper deals with the blind deconvolution of a Multiple-Input Multiple-Output Finite Impulse Response (MIMO-FIR) system. To deal with the blind deconvolution problem using the second-order statistics (SOS) of the outputs, Hua and Tugnait considered it under the conditions that a) the FIR system is irreducible and b) the input signals are spatially uncorrelated and have distinct power spectra. In the present paper, the problem is considered under a weaker condition than the condition a). Namely, we assume that c) the FIR system is equalizable by means of the SOS of the outputs. Under b) and c), we show that the system can be blindly identified up to a permutation, a scaling, and a delay using the SOS of the outputs. Moreover, based on this identifiability, we show a novel necessary and sufficiently condition for solving the blind deconvolution problem, and then, based on the condition, we propose a new algorithm for finding an equalizer using the SOS of the outputs, while Hua and Tugnait have not proposed any algorithm for solving the blind deconvolution under the conditions a) and b).},
keywords={},
doi={},
ISSN={},
month={March},}
Copy
TY - JOUR
TI - Blind Deconvolution of MIMO-FIR Systems with Colored Inputs Using Second-Order Statistics
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 597
EP - 604
AU - Mitsuru KAWAMOTO
AU - Yujiro INOUYE
PY - 2003
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E86-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 2003
AB - The present paper deals with the blind deconvolution of a Multiple-Input Multiple-Output Finite Impulse Response (MIMO-FIR) system. To deal with the blind deconvolution problem using the second-order statistics (SOS) of the outputs, Hua and Tugnait considered it under the conditions that a) the FIR system is irreducible and b) the input signals are spatially uncorrelated and have distinct power spectra. In the present paper, the problem is considered under a weaker condition than the condition a). Namely, we assume that c) the FIR system is equalizable by means of the SOS of the outputs. Under b) and c), we show that the system can be blindly identified up to a permutation, a scaling, and a delay using the SOS of the outputs. Moreover, based on this identifiability, we show a novel necessary and sufficiently condition for solving the blind deconvolution problem, and then, based on the condition, we propose a new algorithm for finding an equalizer using the SOS of the outputs, while Hua and Tugnait have not proposed any algorithm for solving the blind deconvolution under the conditions a) and b).
ER -