A Note on the Relationships among Certified Discrete Log Cryptosystems

Eikoh CHIDA, Toshiya ITOH, Hiroki SHIZUYA

  • Full Text Views

    0

  • Cite this

Summary :

The certified discrete logarithm problem modulo p prime is a discrete logarithm problem under the conditions that the complete factorization of p-1 is given and by which the base g is certified to be a primitive root mod p. For the cryptosystems based on the intractability of certified discrete logarithm problem, Sakurai-Shizuya showed that breaking the Diffie-Hellman key exchange scheme reduces to breaking the Shamir 3-pass key transmission scheme with respect to the expected polynomial-time Turing reducibility. In this paper, we show that we can remove randomness from the reduction above, and replace the reducibility with the polynomial-time many-one. Since the converse reduction is known to hold with respect to the polynomial-time many-one reducibility, our result gives a stronger evidence for that the two schemes are completely equivalent as certified discrete log cryptosystems.

Publication
IEICE TRANSACTIONS on Fundamentals Vol.E86-A No.5 pp.1198-1202
Publication Date
2003/05/01
Publicized
Online ISSN
DOI
Type of Manuscript
Special Section PAPER (Special Section on Discrete Mathematics and Its Applications)
Category

Authors

Keyword

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.