We present a lifting-based lapped transform (L-LT) and a reversible symmetric extension (RSE) in the boundary processing for more effective lossy-to-lossless image coding of data with various qualities from only one piece of lossless compressed data. The proposed dual-DCT-lifting-based LT (D2L-LT) parallel processes two identical LTs and consists of 1-D and 2-D DCT-liftings which allow the direct use of a DCT matrix in each lifting coefficient. Since the DCT-lifting can utilize any existing DCT software or hardware, it has great potential for elegant implementations that are dependent on the architecture and DCT algorithm used. In addition, we present an improved RSE (IRSE) that works by recalculating the boundary processing and solves the boundary problem that the DCT-lifting-based L-LT (DL-LT) has. We show that D2L-LT with IRSE mostly outperforms conventional L-LTs in lossy-to-lossless image coding.
Taizo SUZUKI
University of Tsukuba
Masaaki IKEHARA
Keio University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Taizo SUZUKI, Masaaki IKEHARA, "Dual-DCT-Lifting-Based Lapped Transform with Improved Reversible Symmetric Extension" in IEICE TRANSACTIONS on Fundamentals,
vol. E100-A, no. 5, pp. 1109-1118, May 2017, doi: 10.1587/transfun.E100.A.1109.
Abstract: We present a lifting-based lapped transform (L-LT) and a reversible symmetric extension (RSE) in the boundary processing for more effective lossy-to-lossless image coding of data with various qualities from only one piece of lossless compressed data. The proposed dual-DCT-lifting-based LT (D2L-LT) parallel processes two identical LTs and consists of 1-D and 2-D DCT-liftings which allow the direct use of a DCT matrix in each lifting coefficient. Since the DCT-lifting can utilize any existing DCT software or hardware, it has great potential for elegant implementations that are dependent on the architecture and DCT algorithm used. In addition, we present an improved RSE (IRSE) that works by recalculating the boundary processing and solves the boundary problem that the DCT-lifting-based L-LT (DL-LT) has. We show that D2L-LT with IRSE mostly outperforms conventional L-LTs in lossy-to-lossless image coding.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1587/transfun.E100.A.1109/_p
Copy
@ARTICLE{e100-a_5_1109,
author={Taizo SUZUKI, Masaaki IKEHARA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Dual-DCT-Lifting-Based Lapped Transform with Improved Reversible Symmetric Extension},
year={2017},
volume={E100-A},
number={5},
pages={1109-1118},
abstract={We present a lifting-based lapped transform (L-LT) and a reversible symmetric extension (RSE) in the boundary processing for more effective lossy-to-lossless image coding of data with various qualities from only one piece of lossless compressed data. The proposed dual-DCT-lifting-based LT (D2L-LT) parallel processes two identical LTs and consists of 1-D and 2-D DCT-liftings which allow the direct use of a DCT matrix in each lifting coefficient. Since the DCT-lifting can utilize any existing DCT software or hardware, it has great potential for elegant implementations that are dependent on the architecture and DCT algorithm used. In addition, we present an improved RSE (IRSE) that works by recalculating the boundary processing and solves the boundary problem that the DCT-lifting-based L-LT (DL-LT) has. We show that D2L-LT with IRSE mostly outperforms conventional L-LTs in lossy-to-lossless image coding.},
keywords={},
doi={10.1587/transfun.E100.A.1109},
ISSN={1745-1337},
month={May},}
Copy
TY - JOUR
TI - Dual-DCT-Lifting-Based Lapped Transform with Improved Reversible Symmetric Extension
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1109
EP - 1118
AU - Taizo SUZUKI
AU - Masaaki IKEHARA
PY - 2017
DO - 10.1587/transfun.E100.A.1109
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E100-A
IS - 5
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - May 2017
AB - We present a lifting-based lapped transform (L-LT) and a reversible symmetric extension (RSE) in the boundary processing for more effective lossy-to-lossless image coding of data with various qualities from only one piece of lossless compressed data. The proposed dual-DCT-lifting-based LT (D2L-LT) parallel processes two identical LTs and consists of 1-D and 2-D DCT-liftings which allow the direct use of a DCT matrix in each lifting coefficient. Since the DCT-lifting can utilize any existing DCT software or hardware, it has great potential for elegant implementations that are dependent on the architecture and DCT algorithm used. In addition, we present an improved RSE (IRSE) that works by recalculating the boundary processing and solves the boundary problem that the DCT-lifting-based L-LT (DL-LT) has. We show that D2L-LT with IRSE mostly outperforms conventional L-LTs in lossy-to-lossless image coding.
ER -