High-resolution image and video communication in home networks is highly expected to proliferate with the spread of Wi-Fi devices and the introduction of multiple-input multiple-output (MIMO) systems. This paper proposes a joint transmission and coding scheme for broadcasting high-resolution video streams over multiuser MIMO systems with an eigenbeam-space division multiplexing (E-SDM) technique. Scalable video coding makes it possible to produce the code stream comprised of multiple layers having unequal contribution to image quality. The proposed scheme jointly assigns the data of scalable code streams to subcarriers and spatial streams based on their signal-to-noise ratio (SNR) values in order to transmit visually important data with high reliability. Simulation results show that the proposed scheme surpasses the conventional unequal power allocation (UPA) approach in terms of both peak signal-to-noise ratio (PSNR) of received images and correct decoding probability. PSNR performance of the proposed scheme exceeds 35dB with the probability of over 95% when received SNR is higher than 6dB. The improvement in average PSNR by the proposed scheme compared to the conventional UPA comes up to approx. 20dB at received SNR of 6dB. Furthermore, correct decoding probability reaches 95% when received SNR is greater than 4dB.
Koji TASHIRO
Kyushu Institute of Technology
Leonardo LANANTE
Kyushu Institute of Technology
Masayuki KUROSAKI
Kyushu Institute of Technology
Hiroshi OCHI
Kyushu Institute of Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Koji TASHIRO, Leonardo LANANTE, Masayuki KUROSAKI, Hiroshi OCHI, "Joint Transmission and Coding Scheme for High-Resolution Video Streams over Multiuser MIMO-OFDM Systems" in IEICE TRANSACTIONS on Fundamentals,
vol. E100-A, no. 11, pp. 2304-2313, November 2017, doi: 10.1587/transfun.E100.A.2304.
Abstract: High-resolution image and video communication in home networks is highly expected to proliferate with the spread of Wi-Fi devices and the introduction of multiple-input multiple-output (MIMO) systems. This paper proposes a joint transmission and coding scheme for broadcasting high-resolution video streams over multiuser MIMO systems with an eigenbeam-space division multiplexing (E-SDM) technique. Scalable video coding makes it possible to produce the code stream comprised of multiple layers having unequal contribution to image quality. The proposed scheme jointly assigns the data of scalable code streams to subcarriers and spatial streams based on their signal-to-noise ratio (SNR) values in order to transmit visually important data with high reliability. Simulation results show that the proposed scheme surpasses the conventional unequal power allocation (UPA) approach in terms of both peak signal-to-noise ratio (PSNR) of received images and correct decoding probability. PSNR performance of the proposed scheme exceeds 35dB with the probability of over 95% when received SNR is higher than 6dB. The improvement in average PSNR by the proposed scheme compared to the conventional UPA comes up to approx. 20dB at received SNR of 6dB. Furthermore, correct decoding probability reaches 95% when received SNR is greater than 4dB.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1587/transfun.E100.A.2304/_p
Copy
@ARTICLE{e100-a_11_2304,
author={Koji TASHIRO, Leonardo LANANTE, Masayuki KUROSAKI, Hiroshi OCHI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Joint Transmission and Coding Scheme for High-Resolution Video Streams over Multiuser MIMO-OFDM Systems},
year={2017},
volume={E100-A},
number={11},
pages={2304-2313},
abstract={High-resolution image and video communication in home networks is highly expected to proliferate with the spread of Wi-Fi devices and the introduction of multiple-input multiple-output (MIMO) systems. This paper proposes a joint transmission and coding scheme for broadcasting high-resolution video streams over multiuser MIMO systems with an eigenbeam-space division multiplexing (E-SDM) technique. Scalable video coding makes it possible to produce the code stream comprised of multiple layers having unequal contribution to image quality. The proposed scheme jointly assigns the data of scalable code streams to subcarriers and spatial streams based on their signal-to-noise ratio (SNR) values in order to transmit visually important data with high reliability. Simulation results show that the proposed scheme surpasses the conventional unequal power allocation (UPA) approach in terms of both peak signal-to-noise ratio (PSNR) of received images and correct decoding probability. PSNR performance of the proposed scheme exceeds 35dB with the probability of over 95% when received SNR is higher than 6dB. The improvement in average PSNR by the proposed scheme compared to the conventional UPA comes up to approx. 20dB at received SNR of 6dB. Furthermore, correct decoding probability reaches 95% when received SNR is greater than 4dB.},
keywords={},
doi={10.1587/transfun.E100.A.2304},
ISSN={1745-1337},
month={November},}
Copy
TY - JOUR
TI - Joint Transmission and Coding Scheme for High-Resolution Video Streams over Multiuser MIMO-OFDM Systems
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2304
EP - 2313
AU - Koji TASHIRO
AU - Leonardo LANANTE
AU - Masayuki KUROSAKI
AU - Hiroshi OCHI
PY - 2017
DO - 10.1587/transfun.E100.A.2304
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E100-A
IS - 11
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - November 2017
AB - High-resolution image and video communication in home networks is highly expected to proliferate with the spread of Wi-Fi devices and the introduction of multiple-input multiple-output (MIMO) systems. This paper proposes a joint transmission and coding scheme for broadcasting high-resolution video streams over multiuser MIMO systems with an eigenbeam-space division multiplexing (E-SDM) technique. Scalable video coding makes it possible to produce the code stream comprised of multiple layers having unequal contribution to image quality. The proposed scheme jointly assigns the data of scalable code streams to subcarriers and spatial streams based on their signal-to-noise ratio (SNR) values in order to transmit visually important data with high reliability. Simulation results show that the proposed scheme surpasses the conventional unequal power allocation (UPA) approach in terms of both peak signal-to-noise ratio (PSNR) of received images and correct decoding probability. PSNR performance of the proposed scheme exceeds 35dB with the probability of over 95% when received SNR is higher than 6dB. The improvement in average PSNR by the proposed scheme compared to the conventional UPA comes up to approx. 20dB at received SNR of 6dB. Furthermore, correct decoding probability reaches 95% when received SNR is greater than 4dB.
ER -