Recently, non-binary low-density parity-check (NB-LDPC) codes starts to show their superiority in achieving significant coding gains when moderate codeword lengths are adopted. However, the overwhelming decoding complexity keeps NB-LDPC codes from being widely employed in modern communication devices. This paper proposes a hybrid message-passing decoding algorithm which consumes very low computational complexity. It achieves competitive error performance compared with conventional Min-max algorithm. Simulation result on a (255,174) cyclic code shows that this algorithm obtains at least 0.5dB coding gain over other state-of-the-art low-complexity NB-LDPC decoding algorithms. A partial-parallel NB-LDPC decoder architecture for cyclic NB-LDPC codes is also developed based on this algorithm. Optimization schemes are employed to cut off hard decision symbols in RAMs and also to store only part of the reliability messages. In addition, the variable node units are redesigned especially for the proposed algorithm. Synthesis results demonstrate that about 24.3% gates and 12% memories can be saved over previous works.
Yichao LU
Waseda University
Gang HE
Waseda University
Guifen TIAN
Waseda University
Satoshi GOTO
Waseda University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yichao LU, Gang HE, Guifen TIAN, Satoshi GOTO, "Hybrid Message-Passing Algorithm and Architecture for Decoding Cyclic Non-binary LDPC Codes" in IEICE TRANSACTIONS on Fundamentals,
vol. E96-A, no. 12, pp. 2652-2659, December 2013, doi: 10.1587/transfun.E96.A.2652.
Abstract: Recently, non-binary low-density parity-check (NB-LDPC) codes starts to show their superiority in achieving significant coding gains when moderate codeword lengths are adopted. However, the overwhelming decoding complexity keeps NB-LDPC codes from being widely employed in modern communication devices. This paper proposes a hybrid message-passing decoding algorithm which consumes very low computational complexity. It achieves competitive error performance compared with conventional Min-max algorithm. Simulation result on a (255,174) cyclic code shows that this algorithm obtains at least 0.5dB coding gain over other state-of-the-art low-complexity NB-LDPC decoding algorithms. A partial-parallel NB-LDPC decoder architecture for cyclic NB-LDPC codes is also developed based on this algorithm. Optimization schemes are employed to cut off hard decision symbols in RAMs and also to store only part of the reliability messages. In addition, the variable node units are redesigned especially for the proposed algorithm. Synthesis results demonstrate that about 24.3% gates and 12% memories can be saved over previous works.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1587/transfun.E96.A.2652/_p
Copy
@ARTICLE{e96-a_12_2652,
author={Yichao LU, Gang HE, Guifen TIAN, Satoshi GOTO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Hybrid Message-Passing Algorithm and Architecture for Decoding Cyclic Non-binary LDPC Codes},
year={2013},
volume={E96-A},
number={12},
pages={2652-2659},
abstract={Recently, non-binary low-density parity-check (NB-LDPC) codes starts to show their superiority in achieving significant coding gains when moderate codeword lengths are adopted. However, the overwhelming decoding complexity keeps NB-LDPC codes from being widely employed in modern communication devices. This paper proposes a hybrid message-passing decoding algorithm which consumes very low computational complexity. It achieves competitive error performance compared with conventional Min-max algorithm. Simulation result on a (255,174) cyclic code shows that this algorithm obtains at least 0.5dB coding gain over other state-of-the-art low-complexity NB-LDPC decoding algorithms. A partial-parallel NB-LDPC decoder architecture for cyclic NB-LDPC codes is also developed based on this algorithm. Optimization schemes are employed to cut off hard decision symbols in RAMs and also to store only part of the reliability messages. In addition, the variable node units are redesigned especially for the proposed algorithm. Synthesis results demonstrate that about 24.3% gates and 12% memories can be saved over previous works.},
keywords={},
doi={10.1587/transfun.E96.A.2652},
ISSN={1745-1337},
month={December},}
Copy
TY - JOUR
TI - Hybrid Message-Passing Algorithm and Architecture for Decoding Cyclic Non-binary LDPC Codes
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2652
EP - 2659
AU - Yichao LU
AU - Gang HE
AU - Guifen TIAN
AU - Satoshi GOTO
PY - 2013
DO - 10.1587/transfun.E96.A.2652
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E96-A
IS - 12
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - December 2013
AB - Recently, non-binary low-density parity-check (NB-LDPC) codes starts to show their superiority in achieving significant coding gains when moderate codeword lengths are adopted. However, the overwhelming decoding complexity keeps NB-LDPC codes from being widely employed in modern communication devices. This paper proposes a hybrid message-passing decoding algorithm which consumes very low computational complexity. It achieves competitive error performance compared with conventional Min-max algorithm. Simulation result on a (255,174) cyclic code shows that this algorithm obtains at least 0.5dB coding gain over other state-of-the-art low-complexity NB-LDPC decoding algorithms. A partial-parallel NB-LDPC decoder architecture for cyclic NB-LDPC codes is also developed based on this algorithm. Optimization schemes are employed to cut off hard decision symbols in RAMs and also to store only part of the reliability messages. In addition, the variable node units are redesigned especially for the proposed algorithm. Synthesis results demonstrate that about 24.3% gates and 12% memories can be saved over previous works.
ER -