This paper presents differential-based distinguishers against double-branch compression functions and applies them to ISO standard hash functions RIPEMD-128 and RIPEMD-160. A double-branch compression function computes two branch functions to update a chaining variable and then merges their outputs. For such a compression function, we observe that second-order differential paths will be constructed by finding a sub-path in each branch independently. This leads to 4-sum attacks on 47 steps (out of 64 steps) of RIPEMD-128 and 40 steps (out of 80 steps) of RIPEMD-160. Then new properties called a (partial) 2-dimension sum and a q-multi-second-order collision are considered. The partial 2-dimension sum is generated on 48 steps of RIPEMD-128 and 42 steps of RIPEMD-160, with complexities of 235 and 236, respectively. Theoretically, the 2-dimension sum is generated faster than the brute force attack up to 52 steps of RIPEMD-128 and 51 steps of RIPEMD-160, with complexities of 2101 and 2158, respectively. The results on RIPEMD-128 can also be viewed as q-multi-second-order collision attacks. The practical attacks have been implemented and examples are presented. We stress that our results do not impact to the security of full RIPEMD-128 and RIPEMD-160 hash functions.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yu SASAKI, Lei WANG, "Distinguishers on Double-Branch Compression Function and Applications to Round-Reduced RIPEMD-128 and RIPEMD-160" in IEICE TRANSACTIONS on Fundamentals,
vol. E97-A, no. 1, pp. 177-190, January 2014, doi: 10.1587/transfun.E97.A.177.
Abstract: This paper presents differential-based distinguishers against double-branch compression functions and applies them to ISO standard hash functions RIPEMD-128 and RIPEMD-160. A double-branch compression function computes two branch functions to update a chaining variable and then merges their outputs. For such a compression function, we observe that second-order differential paths will be constructed by finding a sub-path in each branch independently. This leads to 4-sum attacks on 47 steps (out of 64 steps) of RIPEMD-128 and 40 steps (out of 80 steps) of RIPEMD-160. Then new properties called a (partial) 2-dimension sum and a q-multi-second-order collision are considered. The partial 2-dimension sum is generated on 48 steps of RIPEMD-128 and 42 steps of RIPEMD-160, with complexities of 235 and 236, respectively. Theoretically, the 2-dimension sum is generated faster than the brute force attack up to 52 steps of RIPEMD-128 and 51 steps of RIPEMD-160, with complexities of 2101 and 2158, respectively. The results on RIPEMD-128 can also be viewed as q-multi-second-order collision attacks. The practical attacks have been implemented and examples are presented. We stress that our results do not impact to the security of full RIPEMD-128 and RIPEMD-160 hash functions.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1587/transfun.E97.A.177/_p
Copy
@ARTICLE{e97-a_1_177,
author={Yu SASAKI, Lei WANG, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Distinguishers on Double-Branch Compression Function and Applications to Round-Reduced RIPEMD-128 and RIPEMD-160},
year={2014},
volume={E97-A},
number={1},
pages={177-190},
abstract={This paper presents differential-based distinguishers against double-branch compression functions and applies them to ISO standard hash functions RIPEMD-128 and RIPEMD-160. A double-branch compression function computes two branch functions to update a chaining variable and then merges their outputs. For such a compression function, we observe that second-order differential paths will be constructed by finding a sub-path in each branch independently. This leads to 4-sum attacks on 47 steps (out of 64 steps) of RIPEMD-128 and 40 steps (out of 80 steps) of RIPEMD-160. Then new properties called a (partial) 2-dimension sum and a q-multi-second-order collision are considered. The partial 2-dimension sum is generated on 48 steps of RIPEMD-128 and 42 steps of RIPEMD-160, with complexities of 235 and 236, respectively. Theoretically, the 2-dimension sum is generated faster than the brute force attack up to 52 steps of RIPEMD-128 and 51 steps of RIPEMD-160, with complexities of 2101 and 2158, respectively. The results on RIPEMD-128 can also be viewed as q-multi-second-order collision attacks. The practical attacks have been implemented and examples are presented. We stress that our results do not impact to the security of full RIPEMD-128 and RIPEMD-160 hash functions.},
keywords={},
doi={10.1587/transfun.E97.A.177},
ISSN={1745-1337},
month={January},}
Copy
TY - JOUR
TI - Distinguishers on Double-Branch Compression Function and Applications to Round-Reduced RIPEMD-128 and RIPEMD-160
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 177
EP - 190
AU - Yu SASAKI
AU - Lei WANG
PY - 2014
DO - 10.1587/transfun.E97.A.177
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E97-A
IS - 1
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - January 2014
AB - This paper presents differential-based distinguishers against double-branch compression functions and applies them to ISO standard hash functions RIPEMD-128 and RIPEMD-160. A double-branch compression function computes two branch functions to update a chaining variable and then merges their outputs. For such a compression function, we observe that second-order differential paths will be constructed by finding a sub-path in each branch independently. This leads to 4-sum attacks on 47 steps (out of 64 steps) of RIPEMD-128 and 40 steps (out of 80 steps) of RIPEMD-160. Then new properties called a (partial) 2-dimension sum and a q-multi-second-order collision are considered. The partial 2-dimension sum is generated on 48 steps of RIPEMD-128 and 42 steps of RIPEMD-160, with complexities of 235 and 236, respectively. Theoretically, the 2-dimension sum is generated faster than the brute force attack up to 52 steps of RIPEMD-128 and 51 steps of RIPEMD-160, with complexities of 2101 and 2158, respectively. The results on RIPEMD-128 can also be viewed as q-multi-second-order collision attacks. The practical attacks have been implemented and examples are presented. We stress that our results do not impact to the security of full RIPEMD-128 and RIPEMD-160 hash functions.
ER -