High efficiency video coding (HEVC) is a video compression standard that outperforms the predecessor H.264/AVC by doubling the compression efficiency. To enhance the intra prediction accuracy, 35 intra prediction modes were used in the prediction units (PUs), with partition sizes ranging from 4 × 4 to 64 × 64 in HEVC. However, the manifold prediction modes dramatically increase the encoding complexity. This paper proposes a fast mode- and depth-decision algorithm based on edge detection and reconfiguration to alleviate the large computational complexity in intra prediction with trivial degradation in accuracy. For mode decision, we propose pixel gradient statistics (PGS) and mode refinement (MR). PGS uses pixel gradient information to assist in selecting the prediction mode after rough mode decision (RMD). MR uses the neighboring mode information to select the best PU mode (BPM). For depth decision, we propose a partition reconfiguration algorithm to replace the original partitioning order with a more reasonable structure, by using the smoothness of the coding unit as a criterion in deciding the prediction depth. Smoothness detection is based on the PGS result. Experiment results show that the proposed method saves about 41.50% of the original processing time with little degradation (BD bitrate increased by 0.66% and BDPSNR decreased by 0.060dB) in the coding gain.
Gaoxing CHEN
Waseda University
Lei SUN
Waseda University
Zhenyu LIU
Tsinghua University
Takeshi IKENAGA
Waseda University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Gaoxing CHEN, Lei SUN, Zhenyu LIU, Takeshi IKENAGA, "Fast Mode and Depth Decision for HEVC Intra Prediction Based on Edge Detection and Partition Reconfiguration" in IEICE TRANSACTIONS on Fundamentals,
vol. E97-A, no. 11, pp. 2130-2138, November 2014, doi: 10.1587/transfun.E97.A.2130.
Abstract: High efficiency video coding (HEVC) is a video compression standard that outperforms the predecessor H.264/AVC by doubling the compression efficiency. To enhance the intra prediction accuracy, 35 intra prediction modes were used in the prediction units (PUs), with partition sizes ranging from 4 × 4 to 64 × 64 in HEVC. However, the manifold prediction modes dramatically increase the encoding complexity. This paper proposes a fast mode- and depth-decision algorithm based on edge detection and reconfiguration to alleviate the large computational complexity in intra prediction with trivial degradation in accuracy. For mode decision, we propose pixel gradient statistics (PGS) and mode refinement (MR). PGS uses pixel gradient information to assist in selecting the prediction mode after rough mode decision (RMD). MR uses the neighboring mode information to select the best PU mode (BPM). For depth decision, we propose a partition reconfiguration algorithm to replace the original partitioning order with a more reasonable structure, by using the smoothness of the coding unit as a criterion in deciding the prediction depth. Smoothness detection is based on the PGS result. Experiment results show that the proposed method saves about 41.50% of the original processing time with little degradation (BD bitrate increased by 0.66% and BDPSNR decreased by 0.060dB) in the coding gain.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1587/transfun.E97.A.2130/_p
Copy
@ARTICLE{e97-a_11_2130,
author={Gaoxing CHEN, Lei SUN, Zhenyu LIU, Takeshi IKENAGA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Fast Mode and Depth Decision for HEVC Intra Prediction Based on Edge Detection and Partition Reconfiguration},
year={2014},
volume={E97-A},
number={11},
pages={2130-2138},
abstract={High efficiency video coding (HEVC) is a video compression standard that outperforms the predecessor H.264/AVC by doubling the compression efficiency. To enhance the intra prediction accuracy, 35 intra prediction modes were used in the prediction units (PUs), with partition sizes ranging from 4 × 4 to 64 × 64 in HEVC. However, the manifold prediction modes dramatically increase the encoding complexity. This paper proposes a fast mode- and depth-decision algorithm based on edge detection and reconfiguration to alleviate the large computational complexity in intra prediction with trivial degradation in accuracy. For mode decision, we propose pixel gradient statistics (PGS) and mode refinement (MR). PGS uses pixel gradient information to assist in selecting the prediction mode after rough mode decision (RMD). MR uses the neighboring mode information to select the best PU mode (BPM). For depth decision, we propose a partition reconfiguration algorithm to replace the original partitioning order with a more reasonable structure, by using the smoothness of the coding unit as a criterion in deciding the prediction depth. Smoothness detection is based on the PGS result. Experiment results show that the proposed method saves about 41.50% of the original processing time with little degradation (BD bitrate increased by 0.66% and BDPSNR decreased by 0.060dB) in the coding gain.},
keywords={},
doi={10.1587/transfun.E97.A.2130},
ISSN={1745-1337},
month={November},}
Copy
TY - JOUR
TI - Fast Mode and Depth Decision for HEVC Intra Prediction Based on Edge Detection and Partition Reconfiguration
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2130
EP - 2138
AU - Gaoxing CHEN
AU - Lei SUN
AU - Zhenyu LIU
AU - Takeshi IKENAGA
PY - 2014
DO - 10.1587/transfun.E97.A.2130
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E97-A
IS - 11
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - November 2014
AB - High efficiency video coding (HEVC) is a video compression standard that outperforms the predecessor H.264/AVC by doubling the compression efficiency. To enhance the intra prediction accuracy, 35 intra prediction modes were used in the prediction units (PUs), with partition sizes ranging from 4 × 4 to 64 × 64 in HEVC. However, the manifold prediction modes dramatically increase the encoding complexity. This paper proposes a fast mode- and depth-decision algorithm based on edge detection and reconfiguration to alleviate the large computational complexity in intra prediction with trivial degradation in accuracy. For mode decision, we propose pixel gradient statistics (PGS) and mode refinement (MR). PGS uses pixel gradient information to assist in selecting the prediction mode after rough mode decision (RMD). MR uses the neighboring mode information to select the best PU mode (BPM). For depth decision, we propose a partition reconfiguration algorithm to replace the original partitioning order with a more reasonable structure, by using the smoothness of the coding unit as a criterion in deciding the prediction depth. Smoothness detection is based on the PGS result. Experiment results show that the proposed method saves about 41.50% of the original processing time with little degradation (BD bitrate increased by 0.66% and BDPSNR decreased by 0.060dB) in the coding gain.
ER -