In modern hardware security applications, silicon physical unclonable functions (PUFs) are of interest for their potential use as a unique identity or secret key that is generated from inherent characteristics caused by process variations. However, arbiter-based PUFs utilizing the relative delay-time difference between equivalent paths have a security issue in which the generated challenge-response pairs (CRPs) can be predicted by a machine learning attack. We previously proposed the RG-DTM PUF, in which a response is decided from divided time domains allocated to response 0 or 1, to improve the uniqueness of the conventional arbiter-PUF in a small circuit. However, its resistance against machine learning attacks has not yet been studied. In this paper, we evaluate the resistance against machine learning attacks by using a support vector machine (SVM) and logistic regression (LR) in both simulations and measurements and compare the RG-DTM PUF with the conventional arbiter-PUF and with the XOR arbiter-PUF, which strengthens the resistance by using XORing output from multiple arbiter-PUFs. In numerical simulations, prediction rates using both SVM and LR were above 90% within 1,000 training CRPs on the arbiter-PUF. The machine learning attack using the SVM could never predict responses on the XOR arbiter-PUF with over six arbiter-PUFs, whereas the prediction rate eventually reached 95% using the LR and many training CRPs. On the RG-DTM PUF, when the division number of the time domains was over eight, the prediction rates using the SVM were equal to the probability by guess. The machine learning attack using LR has the potential to predict responses, although an adversary would need to steal a significant amount of CRPs. However, the resistance can exponentially be strengthened with an increase in the division number, just like with the XOR arbiter-PUF. Over one million CRPs are required to attack the 16-divided RG-DTM PUF. Differences between the RG-DTM PUF and the XOR arbiter-PUF relate to the area penalty and the power penalty. Specifically, the XOR arbiter-PUF has to make up for resistance against machine learning attacks by increasing the circuit area, while the RG-DTM PUF is resistant against machine learning attacks with less area penalty and power penalty since only capacitors are added to the conventional arbiter-PUF. We also attacked RG-DTM PUF chips, which were fabricated with 0.18-µm CMOS technology, to evaluate the effect of physical variations and unstable responses. The resistance against machine learning attacks was related to the delay-time difference distribution, but unstable responses had little influence on the attack results.
Mitsuru SHIOZAKI
Ritsumeikan University
Kousuke OGAWA
Ritsumeikan University
Kota FURUHASHI
Ritsumeikan University
Takahiko MURAYAMA
Ritsumeikan University
Masaya YOSHIKAWA
Meijo University
Takeshi FUJINO
Ritsumeikan University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Mitsuru SHIOZAKI, Kousuke OGAWA, Kota FURUHASHI, Takahiko MURAYAMA, Masaya YOSHIKAWA, Takeshi FUJINO, "Security Evaluation of RG-DTM PUF Using Machine Learning Attacks" in IEICE TRANSACTIONS on Fundamentals,
vol. E97-A, no. 1, pp. 275-283, January 2014, doi: 10.1587/transfun.E97.A.275.
Abstract: In modern hardware security applications, silicon physical unclonable functions (PUFs) are of interest for their potential use as a unique identity or secret key that is generated from inherent characteristics caused by process variations. However, arbiter-based PUFs utilizing the relative delay-time difference between equivalent paths have a security issue in which the generated challenge-response pairs (CRPs) can be predicted by a machine learning attack. We previously proposed the RG-DTM PUF, in which a response is decided from divided time domains allocated to response 0 or 1, to improve the uniqueness of the conventional arbiter-PUF in a small circuit. However, its resistance against machine learning attacks has not yet been studied. In this paper, we evaluate the resistance against machine learning attacks by using a support vector machine (SVM) and logistic regression (LR) in both simulations and measurements and compare the RG-DTM PUF with the conventional arbiter-PUF and with the XOR arbiter-PUF, which strengthens the resistance by using XORing output from multiple arbiter-PUFs. In numerical simulations, prediction rates using both SVM and LR were above 90% within 1,000 training CRPs on the arbiter-PUF. The machine learning attack using the SVM could never predict responses on the XOR arbiter-PUF with over six arbiter-PUFs, whereas the prediction rate eventually reached 95% using the LR and many training CRPs. On the RG-DTM PUF, when the division number of the time domains was over eight, the prediction rates using the SVM were equal to the probability by guess. The machine learning attack using LR has the potential to predict responses, although an adversary would need to steal a significant amount of CRPs. However, the resistance can exponentially be strengthened with an increase in the division number, just like with the XOR arbiter-PUF. Over one million CRPs are required to attack the 16-divided RG-DTM PUF. Differences between the RG-DTM PUF and the XOR arbiter-PUF relate to the area penalty and the power penalty. Specifically, the XOR arbiter-PUF has to make up for resistance against machine learning attacks by increasing the circuit area, while the RG-DTM PUF is resistant against machine learning attacks with less area penalty and power penalty since only capacitors are added to the conventional arbiter-PUF. We also attacked RG-DTM PUF chips, which were fabricated with 0.18-µm CMOS technology, to evaluate the effect of physical variations and unstable responses. The resistance against machine learning attacks was related to the delay-time difference distribution, but unstable responses had little influence on the attack results.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1587/transfun.E97.A.275/_p
Copy
@ARTICLE{e97-a_1_275,
author={Mitsuru SHIOZAKI, Kousuke OGAWA, Kota FURUHASHI, Takahiko MURAYAMA, Masaya YOSHIKAWA, Takeshi FUJINO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Security Evaluation of RG-DTM PUF Using Machine Learning Attacks},
year={2014},
volume={E97-A},
number={1},
pages={275-283},
abstract={In modern hardware security applications, silicon physical unclonable functions (PUFs) are of interest for their potential use as a unique identity or secret key that is generated from inherent characteristics caused by process variations. However, arbiter-based PUFs utilizing the relative delay-time difference between equivalent paths have a security issue in which the generated challenge-response pairs (CRPs) can be predicted by a machine learning attack. We previously proposed the RG-DTM PUF, in which a response is decided from divided time domains allocated to response 0 or 1, to improve the uniqueness of the conventional arbiter-PUF in a small circuit. However, its resistance against machine learning attacks has not yet been studied. In this paper, we evaluate the resistance against machine learning attacks by using a support vector machine (SVM) and logistic regression (LR) in both simulations and measurements and compare the RG-DTM PUF with the conventional arbiter-PUF and with the XOR arbiter-PUF, which strengthens the resistance by using XORing output from multiple arbiter-PUFs. In numerical simulations, prediction rates using both SVM and LR were above 90% within 1,000 training CRPs on the arbiter-PUF. The machine learning attack using the SVM could never predict responses on the XOR arbiter-PUF with over six arbiter-PUFs, whereas the prediction rate eventually reached 95% using the LR and many training CRPs. On the RG-DTM PUF, when the division number of the time domains was over eight, the prediction rates using the SVM were equal to the probability by guess. The machine learning attack using LR has the potential to predict responses, although an adversary would need to steal a significant amount of CRPs. However, the resistance can exponentially be strengthened with an increase in the division number, just like with the XOR arbiter-PUF. Over one million CRPs are required to attack the 16-divided RG-DTM PUF. Differences between the RG-DTM PUF and the XOR arbiter-PUF relate to the area penalty and the power penalty. Specifically, the XOR arbiter-PUF has to make up for resistance against machine learning attacks by increasing the circuit area, while the RG-DTM PUF is resistant against machine learning attacks with less area penalty and power penalty since only capacitors are added to the conventional arbiter-PUF. We also attacked RG-DTM PUF chips, which were fabricated with 0.18-µm CMOS technology, to evaluate the effect of physical variations and unstable responses. The resistance against machine learning attacks was related to the delay-time difference distribution, but unstable responses had little influence on the attack results.},
keywords={},
doi={10.1587/transfun.E97.A.275},
ISSN={1745-1337},
month={January},}
Copy
TY - JOUR
TI - Security Evaluation of RG-DTM PUF Using Machine Learning Attacks
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 275
EP - 283
AU - Mitsuru SHIOZAKI
AU - Kousuke OGAWA
AU - Kota FURUHASHI
AU - Takahiko MURAYAMA
AU - Masaya YOSHIKAWA
AU - Takeshi FUJINO
PY - 2014
DO - 10.1587/transfun.E97.A.275
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E97-A
IS - 1
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - January 2014
AB - In modern hardware security applications, silicon physical unclonable functions (PUFs) are of interest for their potential use as a unique identity or secret key that is generated from inherent characteristics caused by process variations. However, arbiter-based PUFs utilizing the relative delay-time difference between equivalent paths have a security issue in which the generated challenge-response pairs (CRPs) can be predicted by a machine learning attack. We previously proposed the RG-DTM PUF, in which a response is decided from divided time domains allocated to response 0 or 1, to improve the uniqueness of the conventional arbiter-PUF in a small circuit. However, its resistance against machine learning attacks has not yet been studied. In this paper, we evaluate the resistance against machine learning attacks by using a support vector machine (SVM) and logistic regression (LR) in both simulations and measurements and compare the RG-DTM PUF with the conventional arbiter-PUF and with the XOR arbiter-PUF, which strengthens the resistance by using XORing output from multiple arbiter-PUFs. In numerical simulations, prediction rates using both SVM and LR were above 90% within 1,000 training CRPs on the arbiter-PUF. The machine learning attack using the SVM could never predict responses on the XOR arbiter-PUF with over six arbiter-PUFs, whereas the prediction rate eventually reached 95% using the LR and many training CRPs. On the RG-DTM PUF, when the division number of the time domains was over eight, the prediction rates using the SVM were equal to the probability by guess. The machine learning attack using LR has the potential to predict responses, although an adversary would need to steal a significant amount of CRPs. However, the resistance can exponentially be strengthened with an increase in the division number, just like with the XOR arbiter-PUF. Over one million CRPs are required to attack the 16-divided RG-DTM PUF. Differences between the RG-DTM PUF and the XOR arbiter-PUF relate to the area penalty and the power penalty. Specifically, the XOR arbiter-PUF has to make up for resistance against machine learning attacks by increasing the circuit area, while the RG-DTM PUF is resistant against machine learning attacks with less area penalty and power penalty since only capacitors are added to the conventional arbiter-PUF. We also attacked RG-DTM PUF chips, which were fabricated with 0.18-µm CMOS technology, to evaluate the effect of physical variations and unstable responses. The resistance against machine learning attacks was related to the delay-time difference distribution, but unstable responses had little influence on the attack results.
ER -