Scalable Video Coding (SVC) is an extension of H.264/AVC, aiming to provide the ability to adapt to heterogeneous networks or requirements. It offers great flexibility for bitstream adaptation in multi-point applications such as videoconferencing. However, transcoding between SVC and AVC is necessary due to the existence of legacy AVC-based systems. The straightforward re-encoding method requires great computational cost, and delay-sensitive applications like videoconferencing require much faster transcoding scheme. This paper proposes a 3-stage fast SVC-to-AVC transcoder with medium-grain quality scalability (MGS) for videoconferencing applications. Hierarchical-P structured SVC bitstream is transcoded into IPPP structured AVC bitstream with multiple reference frames. In the first stage, mode decision is accelerated by proposed SVC-to-AVC mode mapping scheme. In the second stage, INTER motion estimation is accelerated by an optimized motion vector (MV) conjunction method to predict the MV with a reduced search range. In the last stage, hadamard-based all zero block (AZB) detection is utilized for early termination. Simulation results show that proposed transcoder achieves very similar coding efficiency to the optimal result, but with averagely 89.6% computational time saving.
Lei SUN
Waseda University
Zhenyu LIU
Tsinghua University
Takeshi IKENAGA
Waseda University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Lei SUN, Zhenyu LIU, Takeshi IKENAGA, "A Mode Mapping and Optimized MV Conjunction Based H.264/SVC to H.264/AVC Transcoder with Medium-Grain Quality Scalability for Videoconferencing" in IEICE TRANSACTIONS on Fundamentals,
vol. E97-A, no. 2, pp. 501-509, February 2014, doi: 10.1587/transfun.E97.A.501.
Abstract: Scalable Video Coding (SVC) is an extension of H.264/AVC, aiming to provide the ability to adapt to heterogeneous networks or requirements. It offers great flexibility for bitstream adaptation in multi-point applications such as videoconferencing. However, transcoding between SVC and AVC is necessary due to the existence of legacy AVC-based systems. The straightforward re-encoding method requires great computational cost, and delay-sensitive applications like videoconferencing require much faster transcoding scheme. This paper proposes a 3-stage fast SVC-to-AVC transcoder with medium-grain quality scalability (MGS) for videoconferencing applications. Hierarchical-P structured SVC bitstream is transcoded into IPPP structured AVC bitstream with multiple reference frames. In the first stage, mode decision is accelerated by proposed SVC-to-AVC mode mapping scheme. In the second stage, INTER motion estimation is accelerated by an optimized motion vector (MV) conjunction method to predict the MV with a reduced search range. In the last stage, hadamard-based all zero block (AZB) detection is utilized for early termination. Simulation results show that proposed transcoder achieves very similar coding efficiency to the optimal result, but with averagely 89.6% computational time saving.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1587/transfun.E97.A.501/_p
Copy
@ARTICLE{e97-a_2_501,
author={Lei SUN, Zhenyu LIU, Takeshi IKENAGA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A Mode Mapping and Optimized MV Conjunction Based H.264/SVC to H.264/AVC Transcoder with Medium-Grain Quality Scalability for Videoconferencing},
year={2014},
volume={E97-A},
number={2},
pages={501-509},
abstract={Scalable Video Coding (SVC) is an extension of H.264/AVC, aiming to provide the ability to adapt to heterogeneous networks or requirements. It offers great flexibility for bitstream adaptation in multi-point applications such as videoconferencing. However, transcoding between SVC and AVC is necessary due to the existence of legacy AVC-based systems. The straightforward re-encoding method requires great computational cost, and delay-sensitive applications like videoconferencing require much faster transcoding scheme. This paper proposes a 3-stage fast SVC-to-AVC transcoder with medium-grain quality scalability (MGS) for videoconferencing applications. Hierarchical-P structured SVC bitstream is transcoded into IPPP structured AVC bitstream with multiple reference frames. In the first stage, mode decision is accelerated by proposed SVC-to-AVC mode mapping scheme. In the second stage, INTER motion estimation is accelerated by an optimized motion vector (MV) conjunction method to predict the MV with a reduced search range. In the last stage, hadamard-based all zero block (AZB) detection is utilized for early termination. Simulation results show that proposed transcoder achieves very similar coding efficiency to the optimal result, but with averagely 89.6% computational time saving.},
keywords={},
doi={10.1587/transfun.E97.A.501},
ISSN={1745-1337},
month={February},}
Copy
TY - JOUR
TI - A Mode Mapping and Optimized MV Conjunction Based H.264/SVC to H.264/AVC Transcoder with Medium-Grain Quality Scalability for Videoconferencing
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 501
EP - 509
AU - Lei SUN
AU - Zhenyu LIU
AU - Takeshi IKENAGA
PY - 2014
DO - 10.1587/transfun.E97.A.501
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E97-A
IS - 2
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - February 2014
AB - Scalable Video Coding (SVC) is an extension of H.264/AVC, aiming to provide the ability to adapt to heterogeneous networks or requirements. It offers great flexibility for bitstream adaptation in multi-point applications such as videoconferencing. However, transcoding between SVC and AVC is necessary due to the existence of legacy AVC-based systems. The straightforward re-encoding method requires great computational cost, and delay-sensitive applications like videoconferencing require much faster transcoding scheme. This paper proposes a 3-stage fast SVC-to-AVC transcoder with medium-grain quality scalability (MGS) for videoconferencing applications. Hierarchical-P structured SVC bitstream is transcoded into IPPP structured AVC bitstream with multiple reference frames. In the first stage, mode decision is accelerated by proposed SVC-to-AVC mode mapping scheme. In the second stage, INTER motion estimation is accelerated by an optimized motion vector (MV) conjunction method to predict the MV with a reduced search range. In the last stage, hadamard-based all zero block (AZB) detection is utilized for early termination. Simulation results show that proposed transcoder achieves very similar coding efficiency to the optimal result, but with averagely 89.6% computational time saving.
ER -