The Generalized Feistel Structure (GFS) is one of the structures used in designs of blockciphers and hash functions. There are several types of GFSs, and we focus on Type 1 and Type 2 GFSs. The security of these structures are well studied and they are adopted in various practical blockciphers and hash functions. The round function used in GFSs consists of two layers. The first layer uses the nonlinear function. Type 1 GFS uses one nonlinear function in this layer, while Type 2 GFS uses a half of the number of sub-blocks. The second layer is a sub-block-wise permutation, and the cyclic shift is generally used in this layer. In this paper, we formalize Type 1.x GFS, which is the natural extension of Type 1 and Type 2 GFSs with respect to the number of nonlinear functions in one round. Next, for Type 1.x GFS using two nonlinear functions in one round, we propose a permutation which has a good diffusion property. We demonstrate that Type 1.x GFS with this permutation has a better diffusion property than other Type 1.x GFS with the sub-block-wise cyclic shift. We also present experimental results of evaluating the diffusion property and the security against the saturation attack, impossible differential attack, differential attack, and linear attack of Type 1.x GFSs with various permutations.
Shingo YANAGIHARA
Nagoya University
Tetsu IWATA
Nagoya University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Shingo YANAGIHARA, Tetsu IWATA, "Type 1.x Generalized Feistel Structures" in IEICE TRANSACTIONS on Fundamentals,
vol. E97-A, no. 4, pp. 952-963, April 2014, doi: 10.1587/transfun.E97.A.952.
Abstract: The Generalized Feistel Structure (GFS) is one of the structures used in designs of blockciphers and hash functions. There are several types of GFSs, and we focus on Type 1 and Type 2 GFSs. The security of these structures are well studied and they are adopted in various practical blockciphers and hash functions. The round function used in GFSs consists of two layers. The first layer uses the nonlinear function. Type 1 GFS uses one nonlinear function in this layer, while Type 2 GFS uses a half of the number of sub-blocks. The second layer is a sub-block-wise permutation, and the cyclic shift is generally used in this layer. In this paper, we formalize Type 1.x GFS, which is the natural extension of Type 1 and Type 2 GFSs with respect to the number of nonlinear functions in one round. Next, for Type 1.x GFS using two nonlinear functions in one round, we propose a permutation which has a good diffusion property. We demonstrate that Type 1.x GFS with this permutation has a better diffusion property than other Type 1.x GFS with the sub-block-wise cyclic shift. We also present experimental results of evaluating the diffusion property and the security against the saturation attack, impossible differential attack, differential attack, and linear attack of Type 1.x GFSs with various permutations.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1587/transfun.E97.A.952/_p
Copy
@ARTICLE{e97-a_4_952,
author={Shingo YANAGIHARA, Tetsu IWATA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Type 1.x Generalized Feistel Structures},
year={2014},
volume={E97-A},
number={4},
pages={952-963},
abstract={The Generalized Feistel Structure (GFS) is one of the structures used in designs of blockciphers and hash functions. There are several types of GFSs, and we focus on Type 1 and Type 2 GFSs. The security of these structures are well studied and they are adopted in various practical blockciphers and hash functions. The round function used in GFSs consists of two layers. The first layer uses the nonlinear function. Type 1 GFS uses one nonlinear function in this layer, while Type 2 GFS uses a half of the number of sub-blocks. The second layer is a sub-block-wise permutation, and the cyclic shift is generally used in this layer. In this paper, we formalize Type 1.x GFS, which is the natural extension of Type 1 and Type 2 GFSs with respect to the number of nonlinear functions in one round. Next, for Type 1.x GFS using two nonlinear functions in one round, we propose a permutation which has a good diffusion property. We demonstrate that Type 1.x GFS with this permutation has a better diffusion property than other Type 1.x GFS with the sub-block-wise cyclic shift. We also present experimental results of evaluating the diffusion property and the security against the saturation attack, impossible differential attack, differential attack, and linear attack of Type 1.x GFSs with various permutations.},
keywords={},
doi={10.1587/transfun.E97.A.952},
ISSN={1745-1337},
month={April},}
Copy
TY - JOUR
TI - Type 1.x Generalized Feistel Structures
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 952
EP - 963
AU - Shingo YANAGIHARA
AU - Tetsu IWATA
PY - 2014
DO - 10.1587/transfun.E97.A.952
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E97-A
IS - 4
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - April 2014
AB - The Generalized Feistel Structure (GFS) is one of the structures used in designs of blockciphers and hash functions. There are several types of GFSs, and we focus on Type 1 and Type 2 GFSs. The security of these structures are well studied and they are adopted in various practical blockciphers and hash functions. The round function used in GFSs consists of two layers. The first layer uses the nonlinear function. Type 1 GFS uses one nonlinear function in this layer, while Type 2 GFS uses a half of the number of sub-blocks. The second layer is a sub-block-wise permutation, and the cyclic shift is generally used in this layer. In this paper, we formalize Type 1.x GFS, which is the natural extension of Type 1 and Type 2 GFSs with respect to the number of nonlinear functions in one round. Next, for Type 1.x GFS using two nonlinear functions in one round, we propose a permutation which has a good diffusion property. We demonstrate that Type 1.x GFS with this permutation has a better diffusion property than other Type 1.x GFS with the sub-block-wise cyclic shift. We also present experimental results of evaluating the diffusion property and the security against the saturation attack, impossible differential attack, differential attack, and linear attack of Type 1.x GFSs with various permutations.
ER -