As process technologies advance, timing-error correction techniques have become important as well. A suspicious timing-error prediction (STEP) technique has been proposed recently, which predicts timing errors by monitoring the middle points, or check points of several speed-paths in a circuit. However, if we insert STEP circuits (STEPCs) in the middle points of all the paths from primary inputs to primary outputs, we need many STEPCs and thus require too much area overhead. How to determine these check points is very important. In this paper, we propose an effective STEPC insertion algorithm minimizing area overhead. Our proposed algorithm moves the STEPC insertion positions to minimize inserted STEPC counts. We apply a max-flow and min-cut approach to determine the optimal positions of inserted STEPCs and reduce the required number of STEPCs to 1/10-1/80 and their area to 1/5-1/8 compared with a naive algorithm. Furthermore, our algorithm realizes 1.12X-1.5X overclocking compared with just inserting STEPCs into several speed-paths.
Shinnosuke YOSHIDA
Waseda University
Youhua SHI
Waseda University
Masao YANAGISAWA
Waseda University
Nozomu TOGAWA
Waseda University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Shinnosuke YOSHIDA, Youhua SHI, Masao YANAGISAWA, Nozomu TOGAWA, "An Effective Suspicious Timing-Error Prediction Circuit Insertion Algorithm Minimizing Area Overhead" in IEICE TRANSACTIONS on Fundamentals,
vol. E98-A, no. 7, pp. 1406-1418, July 2015, doi: 10.1587/transfun.E98.A.1406.
Abstract: As process technologies advance, timing-error correction techniques have become important as well. A suspicious timing-error prediction (STEP) technique has been proposed recently, which predicts timing errors by monitoring the middle points, or check points of several speed-paths in a circuit. However, if we insert STEP circuits (STEPCs) in the middle points of all the paths from primary inputs to primary outputs, we need many STEPCs and thus require too much area overhead. How to determine these check points is very important. In this paper, we propose an effective STEPC insertion algorithm minimizing area overhead. Our proposed algorithm moves the STEPC insertion positions to minimize inserted STEPC counts. We apply a max-flow and min-cut approach to determine the optimal positions of inserted STEPCs and reduce the required number of STEPCs to 1/10-1/80 and their area to 1/5-1/8 compared with a naive algorithm. Furthermore, our algorithm realizes 1.12X-1.5X overclocking compared with just inserting STEPCs into several speed-paths.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1587/transfun.E98.A.1406/_p
Copy
@ARTICLE{e98-a_7_1406,
author={Shinnosuke YOSHIDA, Youhua SHI, Masao YANAGISAWA, Nozomu TOGAWA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={An Effective Suspicious Timing-Error Prediction Circuit Insertion Algorithm Minimizing Area Overhead},
year={2015},
volume={E98-A},
number={7},
pages={1406-1418},
abstract={As process technologies advance, timing-error correction techniques have become important as well. A suspicious timing-error prediction (STEP) technique has been proposed recently, which predicts timing errors by monitoring the middle points, or check points of several speed-paths in a circuit. However, if we insert STEP circuits (STEPCs) in the middle points of all the paths from primary inputs to primary outputs, we need many STEPCs and thus require too much area overhead. How to determine these check points is very important. In this paper, we propose an effective STEPC insertion algorithm minimizing area overhead. Our proposed algorithm moves the STEPC insertion positions to minimize inserted STEPC counts. We apply a max-flow and min-cut approach to determine the optimal positions of inserted STEPCs and reduce the required number of STEPCs to 1/10-1/80 and their area to 1/5-1/8 compared with a naive algorithm. Furthermore, our algorithm realizes 1.12X-1.5X overclocking compared with just inserting STEPCs into several speed-paths.},
keywords={},
doi={10.1587/transfun.E98.A.1406},
ISSN={1745-1337},
month={July},}
Copy
TY - JOUR
TI - An Effective Suspicious Timing-Error Prediction Circuit Insertion Algorithm Minimizing Area Overhead
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1406
EP - 1418
AU - Shinnosuke YOSHIDA
AU - Youhua SHI
AU - Masao YANAGISAWA
AU - Nozomu TOGAWA
PY - 2015
DO - 10.1587/transfun.E98.A.1406
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E98-A
IS - 7
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - July 2015
AB - As process technologies advance, timing-error correction techniques have become important as well. A suspicious timing-error prediction (STEP) technique has been proposed recently, which predicts timing errors by monitoring the middle points, or check points of several speed-paths in a circuit. However, if we insert STEP circuits (STEPCs) in the middle points of all the paths from primary inputs to primary outputs, we need many STEPCs and thus require too much area overhead. How to determine these check points is very important. In this paper, we propose an effective STEPC insertion algorithm minimizing area overhead. Our proposed algorithm moves the STEPC insertion positions to minimize inserted STEPC counts. We apply a max-flow and min-cut approach to determine the optimal positions of inserted STEPCs and reduce the required number of STEPCs to 1/10-1/80 and their area to 1/5-1/8 compared with a naive algorithm. Furthermore, our algorithm realizes 1.12X-1.5X overclocking compared with just inserting STEPCs into several speed-paths.
ER -