It is a well-known and useful problem to find a matching in a given graph G whose size is at most a given parameter k and whose weight is maximized (over all matchings of size at most k in G). In this paper, we consider two natural extensions of this problem. One is to find t disjoint matchings in a given graph G whose total size is at most a given parameter k and whose total weight is maximized, where t is a (small) constant integer. Previously, only the special case where t=2 was known to be fixed-parameter tractable. In this paper, we show that the problem is fixed-parameter tractable for any constant t. When t=2, the time complexity of the new algorithm is significantly better than that of the previously known algorithm. The other is to find a set of vertex-disjoint paths each of length 1 or 2 in a given graph whose total length is at most a given parameter k and whose total weight is maximized. As interesting applications, we further use the algorithms to speed up several known approximation algorithms (for related NP-hard problems) whose approximation ratio depends on a fixed parameter 0<ε<1 and whose running time is dominated by the time needed for exactly solving the problems on graphs in which each connected component has at most ε-1 vertices.
Zhi-Zhong CHEN
Tokyo Denki University
Tatsuie TSUKIJI
Tokyo Denki University
Hiroki YAMADA
Tokyo Denki University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Zhi-Zhong CHEN, Tatsuie TSUKIJI, Hiroki YAMADA, "Parameterized Algorithms for Disjoint Matchings in Weighted Graphs with Applications" in IEICE TRANSACTIONS on Fundamentals,
vol. E99-A, no. 6, pp. 1050-1058, June 2016, doi: 10.1587/transfun.E99.A.1050.
Abstract: It is a well-known and useful problem to find a matching in a given graph G whose size is at most a given parameter k and whose weight is maximized (over all matchings of size at most k in G). In this paper, we consider two natural extensions of this problem. One is to find t disjoint matchings in a given graph G whose total size is at most a given parameter k and whose total weight is maximized, where t is a (small) constant integer. Previously, only the special case where t=2 was known to be fixed-parameter tractable. In this paper, we show that the problem is fixed-parameter tractable for any constant t. When t=2, the time complexity of the new algorithm is significantly better than that of the previously known algorithm. The other is to find a set of vertex-disjoint paths each of length 1 or 2 in a given graph whose total length is at most a given parameter k and whose total weight is maximized. As interesting applications, we further use the algorithms to speed up several known approximation algorithms (for related NP-hard problems) whose approximation ratio depends on a fixed parameter 0<ε<1 and whose running time is dominated by the time needed for exactly solving the problems on graphs in which each connected component has at most ε-1 vertices.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1587/transfun.E99.A.1050/_p
Copy
@ARTICLE{e99-a_6_1050,
author={Zhi-Zhong CHEN, Tatsuie TSUKIJI, Hiroki YAMADA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Parameterized Algorithms for Disjoint Matchings in Weighted Graphs with Applications},
year={2016},
volume={E99-A},
number={6},
pages={1050-1058},
abstract={It is a well-known and useful problem to find a matching in a given graph G whose size is at most a given parameter k and whose weight is maximized (over all matchings of size at most k in G). In this paper, we consider two natural extensions of this problem. One is to find t disjoint matchings in a given graph G whose total size is at most a given parameter k and whose total weight is maximized, where t is a (small) constant integer. Previously, only the special case where t=2 was known to be fixed-parameter tractable. In this paper, we show that the problem is fixed-parameter tractable for any constant t. When t=2, the time complexity of the new algorithm is significantly better than that of the previously known algorithm. The other is to find a set of vertex-disjoint paths each of length 1 or 2 in a given graph whose total length is at most a given parameter k and whose total weight is maximized. As interesting applications, we further use the algorithms to speed up several known approximation algorithms (for related NP-hard problems) whose approximation ratio depends on a fixed parameter 0<ε<1 and whose running time is dominated by the time needed for exactly solving the problems on graphs in which each connected component has at most ε-1 vertices.},
keywords={},
doi={10.1587/transfun.E99.A.1050},
ISSN={1745-1337},
month={June},}
Copy
TY - JOUR
TI - Parameterized Algorithms for Disjoint Matchings in Weighted Graphs with Applications
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1050
EP - 1058
AU - Zhi-Zhong CHEN
AU - Tatsuie TSUKIJI
AU - Hiroki YAMADA
PY - 2016
DO - 10.1587/transfun.E99.A.1050
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E99-A
IS - 6
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - June 2016
AB - It is a well-known and useful problem to find a matching in a given graph G whose size is at most a given parameter k and whose weight is maximized (over all matchings of size at most k in G). In this paper, we consider two natural extensions of this problem. One is to find t disjoint matchings in a given graph G whose total size is at most a given parameter k and whose total weight is maximized, where t is a (small) constant integer. Previously, only the special case where t=2 was known to be fixed-parameter tractable. In this paper, we show that the problem is fixed-parameter tractable for any constant t. When t=2, the time complexity of the new algorithm is significantly better than that of the previously known algorithm. The other is to find a set of vertex-disjoint paths each of length 1 or 2 in a given graph whose total length is at most a given parameter k and whose total weight is maximized. As interesting applications, we further use the algorithms to speed up several known approximation algorithms (for related NP-hard problems) whose approximation ratio depends on a fixed parameter 0<ε<1 and whose running time is dominated by the time needed for exactly solving the problems on graphs in which each connected component has at most ε-1 vertices.
ER -