A multi-stage approach -- which is fast, robust and easy to train -- for a face-detection system is proposed. Motivated by the work of Viola and Jones [1], this approach uses a cascade of classifiers to yield a coarse-to-fine strategy to reduce significantly detection time while maintaining a high detection rate. However, it is distinguished from previous work by two features. First, a new stage has been added to detect face candidate regions more quickly by using a larger window size and larger moving step size. Second, support vector machine (SVM) classifiers are used instead of AdaBoost classifiers in the last stage, and Haar wavelet features selected by the previous stage are reused for the SVM classifiers robustly and efficiently. By combining AdaBoost and SVM classifiers, the final system can achieve both fast and robust detection because most non-face patterns are rejected quickly in earlier layers, while only a small number of promising face patterns are classified robustly in later layers. The proposed multi-stage-based system has been shown to run faster than the original AdaBoost-based system while maintaining comparable accuracy.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Duy-Dinh LE, Shin'ichi SATOH, "A Multi-Stage Approach to Fast Face Detection" in IEICE TRANSACTIONS on Information,
vol. E89-D, no. 7, pp. 2275-2285, July 2006, doi: 10.1093/ietisy/e89-d.7.2275.
Abstract: A multi-stage approach -- which is fast, robust and easy to train -- for a face-detection system is proposed. Motivated by the work of Viola and Jones [1], this approach uses a cascade of classifiers to yield a coarse-to-fine strategy to reduce significantly detection time while maintaining a high detection rate. However, it is distinguished from previous work by two features. First, a new stage has been added to detect face candidate regions more quickly by using a larger window size and larger moving step size. Second, support vector machine (SVM) classifiers are used instead of AdaBoost classifiers in the last stage, and Haar wavelet features selected by the previous stage are reused for the SVM classifiers robustly and efficiently. By combining AdaBoost and SVM classifiers, the final system can achieve both fast and robust detection because most non-face patterns are rejected quickly in earlier layers, while only a small number of promising face patterns are classified robustly in later layers. The proposed multi-stage-based system has been shown to run faster than the original AdaBoost-based system while maintaining comparable accuracy.
URL: https://globals.ieice.org/en_transactions/information/10.1093/ietisy/e89-d.7.2275/_p
Copy
@ARTICLE{e89-d_7_2275,
author={Duy-Dinh LE, Shin'ichi SATOH, },
journal={IEICE TRANSACTIONS on Information},
title={A Multi-Stage Approach to Fast Face Detection},
year={2006},
volume={E89-D},
number={7},
pages={2275-2285},
abstract={A multi-stage approach -- which is fast, robust and easy to train -- for a face-detection system is proposed. Motivated by the work of Viola and Jones [1], this approach uses a cascade of classifiers to yield a coarse-to-fine strategy to reduce significantly detection time while maintaining a high detection rate. However, it is distinguished from previous work by two features. First, a new stage has been added to detect face candidate regions more quickly by using a larger window size and larger moving step size. Second, support vector machine (SVM) classifiers are used instead of AdaBoost classifiers in the last stage, and Haar wavelet features selected by the previous stage are reused for the SVM classifiers robustly and efficiently. By combining AdaBoost and SVM classifiers, the final system can achieve both fast and robust detection because most non-face patterns are rejected quickly in earlier layers, while only a small number of promising face patterns are classified robustly in later layers. The proposed multi-stage-based system has been shown to run faster than the original AdaBoost-based system while maintaining comparable accuracy.},
keywords={},
doi={10.1093/ietisy/e89-d.7.2275},
ISSN={1745-1361},
month={July},}
Copy
TY - JOUR
TI - A Multi-Stage Approach to Fast Face Detection
T2 - IEICE TRANSACTIONS on Information
SP - 2275
EP - 2285
AU - Duy-Dinh LE
AU - Shin'ichi SATOH
PY - 2006
DO - 10.1093/ietisy/e89-d.7.2275
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E89-D
IS - 7
JA - IEICE TRANSACTIONS on Information
Y1 - July 2006
AB - A multi-stage approach -- which is fast, robust and easy to train -- for a face-detection system is proposed. Motivated by the work of Viola and Jones [1], this approach uses a cascade of classifiers to yield a coarse-to-fine strategy to reduce significantly detection time while maintaining a high detection rate. However, it is distinguished from previous work by two features. First, a new stage has been added to detect face candidate regions more quickly by using a larger window size and larger moving step size. Second, support vector machine (SVM) classifiers are used instead of AdaBoost classifiers in the last stage, and Haar wavelet features selected by the previous stage are reused for the SVM classifiers robustly and efficiently. By combining AdaBoost and SVM classifiers, the final system can achieve both fast and robust detection because most non-face patterns are rejected quickly in earlier layers, while only a small number of promising face patterns are classified robustly in later layers. The proposed multi-stage-based system has been shown to run faster than the original AdaBoost-based system while maintaining comparable accuracy.
ER -