We have previously proposed a noise-robust speaker verification method using fundamental frequency (F0) extracted using the Hough transform. The method also incorporates an automatic stream-weight and decision threshold estimation technique. It has been confirmed that the proposed method is effective for white noise at various SNR conditions. This paper evaluates the proposed method in more practical in-car and elevator-hall noise conditions. The paper first describes the noise-robust F0 extraction method and details of our robust speaker verification method using multi-stream HMMs for integrating the extracted F0 and cepstral features. Details of the automatic stream-weight and threshold estimation method for multi-stream speaker verification framework are also explained. This method simultaneously optimizes stream-weights and a decision threshold by combining the linear discriminant analysis (LDA) and the Adaboost technique. Experiments were conducted using Japanese connected digit speech contaminated by white, in-car, or elevator-hall noise at various SNRs. Experimental results show that the F0 features improve the verification performance in various noisy environments, and that our stream-weight and threshold optimization method effectively estimates control parameters so that FARs and FRRs are adjusted to achieve equal error rates (EERs) under various noisy conditions.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Taichi ASAMI, Koji IWANO, Sadaoki FURUI, "Evaluation of a Noise-Robust Multi-Stream Speaker Verification Method Using F0 Information" in IEICE TRANSACTIONS on Information,
vol. E91-D, no. 3, pp. 549-557, March 2008, doi: 10.1093/ietisy/e91-d.3.549.
Abstract: We have previously proposed a noise-robust speaker verification method using fundamental frequency (F0) extracted using the Hough transform. The method also incorporates an automatic stream-weight and decision threshold estimation technique. It has been confirmed that the proposed method is effective for white noise at various SNR conditions. This paper evaluates the proposed method in more practical in-car and elevator-hall noise conditions. The paper first describes the noise-robust F0 extraction method and details of our robust speaker verification method using multi-stream HMMs for integrating the extracted F0 and cepstral features. Details of the automatic stream-weight and threshold estimation method for multi-stream speaker verification framework are also explained. This method simultaneously optimizes stream-weights and a decision threshold by combining the linear discriminant analysis (LDA) and the Adaboost technique. Experiments were conducted using Japanese connected digit speech contaminated by white, in-car, or elevator-hall noise at various SNRs. Experimental results show that the F0 features improve the verification performance in various noisy environments, and that our stream-weight and threshold optimization method effectively estimates control parameters so that FARs and FRRs are adjusted to achieve equal error rates (EERs) under various noisy conditions.
URL: https://globals.ieice.org/en_transactions/information/10.1093/ietisy/e91-d.3.549/_p
Copy
@ARTICLE{e91-d_3_549,
author={Taichi ASAMI, Koji IWANO, Sadaoki FURUI, },
journal={IEICE TRANSACTIONS on Information},
title={Evaluation of a Noise-Robust Multi-Stream Speaker Verification Method Using F0 Information},
year={2008},
volume={E91-D},
number={3},
pages={549-557},
abstract={We have previously proposed a noise-robust speaker verification method using fundamental frequency (F0) extracted using the Hough transform. The method also incorporates an automatic stream-weight and decision threshold estimation technique. It has been confirmed that the proposed method is effective for white noise at various SNR conditions. This paper evaluates the proposed method in more practical in-car and elevator-hall noise conditions. The paper first describes the noise-robust F0 extraction method and details of our robust speaker verification method using multi-stream HMMs for integrating the extracted F0 and cepstral features. Details of the automatic stream-weight and threshold estimation method for multi-stream speaker verification framework are also explained. This method simultaneously optimizes stream-weights and a decision threshold by combining the linear discriminant analysis (LDA) and the Adaboost technique. Experiments were conducted using Japanese connected digit speech contaminated by white, in-car, or elevator-hall noise at various SNRs. Experimental results show that the F0 features improve the verification performance in various noisy environments, and that our stream-weight and threshold optimization method effectively estimates control parameters so that FARs and FRRs are adjusted to achieve equal error rates (EERs) under various noisy conditions.},
keywords={},
doi={10.1093/ietisy/e91-d.3.549},
ISSN={1745-1361},
month={March},}
Copy
TY - JOUR
TI - Evaluation of a Noise-Robust Multi-Stream Speaker Verification Method Using F0 Information
T2 - IEICE TRANSACTIONS on Information
SP - 549
EP - 557
AU - Taichi ASAMI
AU - Koji IWANO
AU - Sadaoki FURUI
PY - 2008
DO - 10.1093/ietisy/e91-d.3.549
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E91-D
IS - 3
JA - IEICE TRANSACTIONS on Information
Y1 - March 2008
AB - We have previously proposed a noise-robust speaker verification method using fundamental frequency (F0) extracted using the Hough transform. The method also incorporates an automatic stream-weight and decision threshold estimation technique. It has been confirmed that the proposed method is effective for white noise at various SNR conditions. This paper evaluates the proposed method in more practical in-car and elevator-hall noise conditions. The paper first describes the noise-robust F0 extraction method and details of our robust speaker verification method using multi-stream HMMs for integrating the extracted F0 and cepstral features. Details of the automatic stream-weight and threshold estimation method for multi-stream speaker verification framework are also explained. This method simultaneously optimizes stream-weights and a decision threshold by combining the linear discriminant analysis (LDA) and the Adaboost technique. Experiments were conducted using Japanese connected digit speech contaminated by white, in-car, or elevator-hall noise at various SNRs. Experimental results show that the F0 features improve the verification performance in various noisy environments, and that our stream-weight and threshold optimization method effectively estimates control parameters so that FARs and FRRs are adjusted to achieve equal error rates (EERs) under various noisy conditions.
ER -