A new method of multi-bit embedding based on a protocol of secure asymmetric digital watermarking detection is proposed. Secure watermark detection has been achieved by means of allowing watermark verifier to detect a message without any secret information exposed in extraction process. Our methodology is based on an asymmetric property of a watermark algorithm which hybridizes a statistical watermark algorithm and a public-key algorithm. In 2004, Furukawa proposed a secure watermark detection scheme using patchwork watermarking and Paillier encryption, but the feasibility had not tested in his work. We have examined it and have shown that it has a drawback in heavy overhead in processing time. We overcome the issue by replacing the cryptosystem with the modified El Gamal encryption and improve performance in processing time. We have developed software implementation for both methods and have measured effective performance. The obtained result shows that the performance of our method is better than Frukawa's method under most of practical conditions. In our method, multiple bits can be embedded by assigning distinct generators in each bit, while the embedding algorithm of Frukawa's method assumes a single-bit message. This strongly enhances capability of multi-bit information embedding, and also improves communication and computation cost.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Mitsuo OKADA, Hiroaki KIKUCHI, Yasuo OKABE, "Multi-Bit Embedding in Asymmetric Digital Watermarking without Exposing Secret Information" in IEICE TRANSACTIONS on Information,
vol. E91-D, no. 5, pp. 1348-1358, May 2008, doi: 10.1093/ietisy/e91-d.5.1348.
Abstract: A new method of multi-bit embedding based on a protocol of secure asymmetric digital watermarking detection is proposed. Secure watermark detection has been achieved by means of allowing watermark verifier to detect a message without any secret information exposed in extraction process. Our methodology is based on an asymmetric property of a watermark algorithm which hybridizes a statistical watermark algorithm and a public-key algorithm. In 2004, Furukawa proposed a secure watermark detection scheme using patchwork watermarking and Paillier encryption, but the feasibility had not tested in his work. We have examined it and have shown that it has a drawback in heavy overhead in processing time. We overcome the issue by replacing the cryptosystem with the modified El Gamal encryption and improve performance in processing time. We have developed software implementation for both methods and have measured effective performance. The obtained result shows that the performance of our method is better than Frukawa's method under most of practical conditions. In our method, multiple bits can be embedded by assigning distinct generators in each bit, while the embedding algorithm of Frukawa's method assumes a single-bit message. This strongly enhances capability of multi-bit information embedding, and also improves communication and computation cost.
URL: https://globals.ieice.org/en_transactions/information/10.1093/ietisy/e91-d.5.1348/_p
Copy
@ARTICLE{e91-d_5_1348,
author={Mitsuo OKADA, Hiroaki KIKUCHI, Yasuo OKABE, },
journal={IEICE TRANSACTIONS on Information},
title={Multi-Bit Embedding in Asymmetric Digital Watermarking without Exposing Secret Information},
year={2008},
volume={E91-D},
number={5},
pages={1348-1358},
abstract={A new method of multi-bit embedding based on a protocol of secure asymmetric digital watermarking detection is proposed. Secure watermark detection has been achieved by means of allowing watermark verifier to detect a message without any secret information exposed in extraction process. Our methodology is based on an asymmetric property of a watermark algorithm which hybridizes a statistical watermark algorithm and a public-key algorithm. In 2004, Furukawa proposed a secure watermark detection scheme using patchwork watermarking and Paillier encryption, but the feasibility had not tested in his work. We have examined it and have shown that it has a drawback in heavy overhead in processing time. We overcome the issue by replacing the cryptosystem with the modified El Gamal encryption and improve performance in processing time. We have developed software implementation for both methods and have measured effective performance. The obtained result shows that the performance of our method is better than Frukawa's method under most of practical conditions. In our method, multiple bits can be embedded by assigning distinct generators in each bit, while the embedding algorithm of Frukawa's method assumes a single-bit message. This strongly enhances capability of multi-bit information embedding, and also improves communication and computation cost.},
keywords={},
doi={10.1093/ietisy/e91-d.5.1348},
ISSN={1745-1361},
month={May},}
Copy
TY - JOUR
TI - Multi-Bit Embedding in Asymmetric Digital Watermarking without Exposing Secret Information
T2 - IEICE TRANSACTIONS on Information
SP - 1348
EP - 1358
AU - Mitsuo OKADA
AU - Hiroaki KIKUCHI
AU - Yasuo OKABE
PY - 2008
DO - 10.1093/ietisy/e91-d.5.1348
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E91-D
IS - 5
JA - IEICE TRANSACTIONS on Information
Y1 - May 2008
AB - A new method of multi-bit embedding based on a protocol of secure asymmetric digital watermarking detection is proposed. Secure watermark detection has been achieved by means of allowing watermark verifier to detect a message without any secret information exposed in extraction process. Our methodology is based on an asymmetric property of a watermark algorithm which hybridizes a statistical watermark algorithm and a public-key algorithm. In 2004, Furukawa proposed a secure watermark detection scheme using patchwork watermarking and Paillier encryption, but the feasibility had not tested in his work. We have examined it and have shown that it has a drawback in heavy overhead in processing time. We overcome the issue by replacing the cryptosystem with the modified El Gamal encryption and improve performance in processing time. We have developed software implementation for both methods and have measured effective performance. The obtained result shows that the performance of our method is better than Frukawa's method under most of practical conditions. In our method, multiple bits can be embedded by assigning distinct generators in each bit, while the embedding algorithm of Frukawa's method assumes a single-bit message. This strongly enhances capability of multi-bit information embedding, and also improves communication and computation cost.
ER -