In order to respond to the active market's needs for software with various new functions, the system testing must be completed within a limited period. Additionally, important faults, which are closely related to essential functions for users or the target system, have to be removed, preferably in system testing. Many techniques have been proposed to date for effective software testing. Among them, selective software testing is one of the most cost effective techniques. However, most of the previous techniques cannot be applied to short-term development and initial development of software with various new functions because much cost is needed for their testing preparation. In this paper, we propose a new method for selective system testing in which priorities assigned to functions play an essential role in the execution of testing. The priorities are determined based on the evaluation results of three metrics for functions: the frequency of use, the complexity of use scenario, and the fault impact to users. Detailed testing instructions are assigned to test items with high priority, and short and ordinal instructions are assigned to those with low priority. The difference in the volume of testing instruction controls the effort of checking test items. As a result of experimental application to actual software testing in a certain company, we have confirmed that the proposed selective system testing can detect both fatal faults related to key functions and critical faults for the system.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Masayuki HIRAYAMA, Osamu MIZUNO, Tohru KIKUNO, "Test Item Prioritizing Metrics for Selective Software Testing" in IEICE TRANSACTIONS on Information,
vol. E87-D, no. 12, pp. 2733-2743, December 2004, doi: .
Abstract: In order to respond to the active market's needs for software with various new functions, the system testing must be completed within a limited period. Additionally, important faults, which are closely related to essential functions for users or the target system, have to be removed, preferably in system testing. Many techniques have been proposed to date for effective software testing. Among them, selective software testing is one of the most cost effective techniques. However, most of the previous techniques cannot be applied to short-term development and initial development of software with various new functions because much cost is needed for their testing preparation. In this paper, we propose a new method for selective system testing in which priorities assigned to functions play an essential role in the execution of testing. The priorities are determined based on the evaluation results of three metrics for functions: the frequency of use, the complexity of use scenario, and the fault impact to users. Detailed testing instructions are assigned to test items with high priority, and short and ordinal instructions are assigned to those with low priority. The difference in the volume of testing instruction controls the effort of checking test items. As a result of experimental application to actual software testing in a certain company, we have confirmed that the proposed selective system testing can detect both fatal faults related to key functions and critical faults for the system.
URL: https://globals.ieice.org/en_transactions/information/10.1587/e87-d_12_2733/_p
Copy
@ARTICLE{e87-d_12_2733,
author={Masayuki HIRAYAMA, Osamu MIZUNO, Tohru KIKUNO, },
journal={IEICE TRANSACTIONS on Information},
title={Test Item Prioritizing Metrics for Selective Software Testing},
year={2004},
volume={E87-D},
number={12},
pages={2733-2743},
abstract={In order to respond to the active market's needs for software with various new functions, the system testing must be completed within a limited period. Additionally, important faults, which are closely related to essential functions for users or the target system, have to be removed, preferably in system testing. Many techniques have been proposed to date for effective software testing. Among them, selective software testing is one of the most cost effective techniques. However, most of the previous techniques cannot be applied to short-term development and initial development of software with various new functions because much cost is needed for their testing preparation. In this paper, we propose a new method for selective system testing in which priorities assigned to functions play an essential role in the execution of testing. The priorities are determined based on the evaluation results of three metrics for functions: the frequency of use, the complexity of use scenario, and the fault impact to users. Detailed testing instructions are assigned to test items with high priority, and short and ordinal instructions are assigned to those with low priority. The difference in the volume of testing instruction controls the effort of checking test items. As a result of experimental application to actual software testing in a certain company, we have confirmed that the proposed selective system testing can detect both fatal faults related to key functions and critical faults for the system.},
keywords={},
doi={},
ISSN={},
month={December},}
Copy
TY - JOUR
TI - Test Item Prioritizing Metrics for Selective Software Testing
T2 - IEICE TRANSACTIONS on Information
SP - 2733
EP - 2743
AU - Masayuki HIRAYAMA
AU - Osamu MIZUNO
AU - Tohru KIKUNO
PY - 2004
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E87-D
IS - 12
JA - IEICE TRANSACTIONS on Information
Y1 - December 2004
AB - In order to respond to the active market's needs for software with various new functions, the system testing must be completed within a limited period. Additionally, important faults, which are closely related to essential functions for users or the target system, have to be removed, preferably in system testing. Many techniques have been proposed to date for effective software testing. Among them, selective software testing is one of the most cost effective techniques. However, most of the previous techniques cannot be applied to short-term development and initial development of software with various new functions because much cost is needed for their testing preparation. In this paper, we propose a new method for selective system testing in which priorities assigned to functions play an essential role in the execution of testing. The priorities are determined based on the evaluation results of three metrics for functions: the frequency of use, the complexity of use scenario, and the fault impact to users. Detailed testing instructions are assigned to test items with high priority, and short and ordinal instructions are assigned to those with low priority. The difference in the volume of testing instruction controls the effort of checking test items. As a result of experimental application to actual software testing in a certain company, we have confirmed that the proposed selective system testing can detect both fatal faults related to key functions and critical faults for the system.
ER -