The classic light field and lumigraph are two well-known approaches to image-based rendering, and subsequently many new rendering techniques and representations have been proposed based on them. Nevertheless the main limitation remains that in almost all of them only static scenes are considered. In this contribution we describe a method for calibrating a scene which includes moving or deforming objects from multiple image sequences taken with a hand-held camera. For each image sequence the scene is assumed to be static, which allows the reconstruction of a conventional static light field. The dynamic light field is thus composed of multiple static light fields, each of which describes the state of the scene at a certain point in time. This allows not only the modeling of rigid moving objects, but any kind of motion including deformations. In order to facilitate the automatic calibration, some assumptions are made for the scene and input data, such as that the image sequences for each respective time step share one common camera pose and that only the minor part of the scene is actually in motion.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Ingo SCHOLZ, Joachim DENZLER, Heinrich NIEMANN, "Calibration of Real Scenes for the Reconstruction of Dynamic Light Fields" in IEICE TRANSACTIONS on Information,
vol. E87-D, no. 1, pp. 42-49, January 2004, doi: .
Abstract: The classic light field and lumigraph are two well-known approaches to image-based rendering, and subsequently many new rendering techniques and representations have been proposed based on them. Nevertheless the main limitation remains that in almost all of them only static scenes are considered. In this contribution we describe a method for calibrating a scene which includes moving or deforming objects from multiple image sequences taken with a hand-held camera. For each image sequence the scene is assumed to be static, which allows the reconstruction of a conventional static light field. The dynamic light field is thus composed of multiple static light fields, each of which describes the state of the scene at a certain point in time. This allows not only the modeling of rigid moving objects, but any kind of motion including deformations. In order to facilitate the automatic calibration, some assumptions are made for the scene and input data, such as that the image sequences for each respective time step share one common camera pose and that only the minor part of the scene is actually in motion.
URL: https://globals.ieice.org/en_transactions/information/10.1587/e87-d_1_42/_p
Copy
@ARTICLE{e87-d_1_42,
author={Ingo SCHOLZ, Joachim DENZLER, Heinrich NIEMANN, },
journal={IEICE TRANSACTIONS on Information},
title={Calibration of Real Scenes for the Reconstruction of Dynamic Light Fields},
year={2004},
volume={E87-D},
number={1},
pages={42-49},
abstract={The classic light field and lumigraph are two well-known approaches to image-based rendering, and subsequently many new rendering techniques and representations have been proposed based on them. Nevertheless the main limitation remains that in almost all of them only static scenes are considered. In this contribution we describe a method for calibrating a scene which includes moving or deforming objects from multiple image sequences taken with a hand-held camera. For each image sequence the scene is assumed to be static, which allows the reconstruction of a conventional static light field. The dynamic light field is thus composed of multiple static light fields, each of which describes the state of the scene at a certain point in time. This allows not only the modeling of rigid moving objects, but any kind of motion including deformations. In order to facilitate the automatic calibration, some assumptions are made for the scene and input data, such as that the image sequences for each respective time step share one common camera pose and that only the minor part of the scene is actually in motion.},
keywords={},
doi={},
ISSN={},
month={January},}
Copy
TY - JOUR
TI - Calibration of Real Scenes for the Reconstruction of Dynamic Light Fields
T2 - IEICE TRANSACTIONS on Information
SP - 42
EP - 49
AU - Ingo SCHOLZ
AU - Joachim DENZLER
AU - Heinrich NIEMANN
PY - 2004
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E87-D
IS - 1
JA - IEICE TRANSACTIONS on Information
Y1 - January 2004
AB - The classic light field and lumigraph are two well-known approaches to image-based rendering, and subsequently many new rendering techniques and representations have been proposed based on them. Nevertheless the main limitation remains that in almost all of them only static scenes are considered. In this contribution we describe a method for calibrating a scene which includes moving or deforming objects from multiple image sequences taken with a hand-held camera. For each image sequence the scene is assumed to be static, which allows the reconstruction of a conventional static light field. The dynamic light field is thus composed of multiple static light fields, each of which describes the state of the scene at a certain point in time. This allows not only the modeling of rigid moving objects, but any kind of motion including deformations. In order to facilitate the automatic calibration, some assumptions are made for the scene and input data, such as that the image sequences for each respective time step share one common camera pose and that only the minor part of the scene is actually in motion.
ER -