This paper deals with a first evaluation of the efficiency and the robustness of the real-time "v-disparity" algorithm in stereovision for generic road obstacles detection towards various types of obstacles (vehicle, pedestrian, motorbike, cyclist, boxes) and under adverse conditions (day, night, rain, glowing effect, noise and false matches in the disparity map). The theoretical good properties of the "v-disparity" algorithm--accuracy, robustness, computational speed--are experimentally confirmed. The good results obtained allow us to use this stereo algorithm as the onboard perception process for Driving Safety Assistance: conductor warning and longitudinal control of a low speed automated vehicle (using a second order sliding mode control) in difficult and original situations, at frame rate using no special hardware. Results of experiments--Vehicle following at low speed, Stop'n'Go, Stop on Obstacle (pedestrian, fallen motorbike, load dropping obstacle)--are presented.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Raphael LABAYRADE, Didier AUBERT, "Robust and Fast Stereovision Based Obstacles Detection for Driving Safety Assistance" in IEICE TRANSACTIONS on Information,
vol. E87-D, no. 1, pp. 80-88, January 2004, doi: .
Abstract: This paper deals with a first evaluation of the efficiency and the robustness of the real-time "v-disparity" algorithm in stereovision for generic road obstacles detection towards various types of obstacles (vehicle, pedestrian, motorbike, cyclist, boxes) and under adverse conditions (day, night, rain, glowing effect, noise and false matches in the disparity map). The theoretical good properties of the "v-disparity" algorithm--accuracy, robustness, computational speed--are experimentally confirmed. The good results obtained allow us to use this stereo algorithm as the onboard perception process for Driving Safety Assistance: conductor warning and longitudinal control of a low speed automated vehicle (using a second order sliding mode control) in difficult and original situations, at frame rate using no special hardware. Results of experiments--Vehicle following at low speed, Stop'n'Go, Stop on Obstacle (pedestrian, fallen motorbike, load dropping obstacle)--are presented.
URL: https://globals.ieice.org/en_transactions/information/10.1587/e87-d_1_80/_p
Copy
@ARTICLE{e87-d_1_80,
author={Raphael LABAYRADE, Didier AUBERT, },
journal={IEICE TRANSACTIONS on Information},
title={Robust and Fast Stereovision Based Obstacles Detection for Driving Safety Assistance},
year={2004},
volume={E87-D},
number={1},
pages={80-88},
abstract={This paper deals with a first evaluation of the efficiency and the robustness of the real-time "v-disparity" algorithm in stereovision for generic road obstacles detection towards various types of obstacles (vehicle, pedestrian, motorbike, cyclist, boxes) and under adverse conditions (day, night, rain, glowing effect, noise and false matches in the disparity map). The theoretical good properties of the "v-disparity" algorithm--accuracy, robustness, computational speed--are experimentally confirmed. The good results obtained allow us to use this stereo algorithm as the onboard perception process for Driving Safety Assistance: conductor warning and longitudinal control of a low speed automated vehicle (using a second order sliding mode control) in difficult and original situations, at frame rate using no special hardware. Results of experiments--Vehicle following at low speed, Stop'n'Go, Stop on Obstacle (pedestrian, fallen motorbike, load dropping obstacle)--are presented.},
keywords={},
doi={},
ISSN={},
month={January},}
Copy
TY - JOUR
TI - Robust and Fast Stereovision Based Obstacles Detection for Driving Safety Assistance
T2 - IEICE TRANSACTIONS on Information
SP - 80
EP - 88
AU - Raphael LABAYRADE
AU - Didier AUBERT
PY - 2004
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E87-D
IS - 1
JA - IEICE TRANSACTIONS on Information
Y1 - January 2004
AB - This paper deals with a first evaluation of the efficiency and the robustness of the real-time "v-disparity" algorithm in stereovision for generic road obstacles detection towards various types of obstacles (vehicle, pedestrian, motorbike, cyclist, boxes) and under adverse conditions (day, night, rain, glowing effect, noise and false matches in the disparity map). The theoretical good properties of the "v-disparity" algorithm--accuracy, robustness, computational speed--are experimentally confirmed. The good results obtained allow us to use this stereo algorithm as the onboard perception process for Driving Safety Assistance: conductor warning and longitudinal control of a low speed automated vehicle (using a second order sliding mode control) in difficult and original situations, at frame rate using no special hardware. Results of experiments--Vehicle following at low speed, Stop'n'Go, Stop on Obstacle (pedestrian, fallen motorbike, load dropping obstacle)--are presented.
ER -