Most error correction interfaces for speech recognition applications on smartphones require the user to first mark an error region and choose the correct word from a candidate list. We propose a simple multimodal interface to make the process more efficient. We develop Long Context Match (LCM) to get candidates that complement the conventional word confusion network (WCN). Assuming that not only the preceding words but also the succeeding words of the error region are validated by users, we use such contexts to search higher-order n-grams corpora for matching word sequences. For this purpose, we also utilize the Web text data. Furthermore, we propose a combination of LCM and WCN (“LCM + WCN”) to provide users with candidate lists that are more relevant than those yielded by WCN alone. We compare our interface with the WCN-based interface on the Corpus of Spontaneous Japanese (CSJ). Our proposed “LCM + WCN” method improved the 1-best accuracy by 23%, improved the Mean Reciprocal Rank (MRR) by 28%, and our interface reduced the user's load by 12%.
Yuan LIANG
Tokyo Institute of Technology
Koji IWANO
Tokyo City University
Koichi SHINODA
Tokyo Institute of Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yuan LIANG, Koji IWANO, Koichi SHINODA, "Error Correction Using Long Context Match for Smartphone Speech Recognition" in IEICE TRANSACTIONS on Information,
vol. E98-D, no. 11, pp. 1932-1942, November 2015, doi: 10.1587/transinf.2015EDP7179.
Abstract: Most error correction interfaces for speech recognition applications on smartphones require the user to first mark an error region and choose the correct word from a candidate list. We propose a simple multimodal interface to make the process more efficient. We develop Long Context Match (LCM) to get candidates that complement the conventional word confusion network (WCN). Assuming that not only the preceding words but also the succeeding words of the error region are validated by users, we use such contexts to search higher-order n-grams corpora for matching word sequences. For this purpose, we also utilize the Web text data. Furthermore, we propose a combination of LCM and WCN (“LCM + WCN”) to provide users with candidate lists that are more relevant than those yielded by WCN alone. We compare our interface with the WCN-based interface on the Corpus of Spontaneous Japanese (CSJ). Our proposed “LCM + WCN” method improved the 1-best accuracy by 23%, improved the Mean Reciprocal Rank (MRR) by 28%, and our interface reduced the user's load by 12%.
URL: https://globals.ieice.org/en_transactions/information/10.1587/transinf.2015EDP7179/_p
Copy
@ARTICLE{e98-d_11_1932,
author={Yuan LIANG, Koji IWANO, Koichi SHINODA, },
journal={IEICE TRANSACTIONS on Information},
title={Error Correction Using Long Context Match for Smartphone Speech Recognition},
year={2015},
volume={E98-D},
number={11},
pages={1932-1942},
abstract={Most error correction interfaces for speech recognition applications on smartphones require the user to first mark an error region and choose the correct word from a candidate list. We propose a simple multimodal interface to make the process more efficient. We develop Long Context Match (LCM) to get candidates that complement the conventional word confusion network (WCN). Assuming that not only the preceding words but also the succeeding words of the error region are validated by users, we use such contexts to search higher-order n-grams corpora for matching word sequences. For this purpose, we also utilize the Web text data. Furthermore, we propose a combination of LCM and WCN (“LCM + WCN”) to provide users with candidate lists that are more relevant than those yielded by WCN alone. We compare our interface with the WCN-based interface on the Corpus of Spontaneous Japanese (CSJ). Our proposed “LCM + WCN” method improved the 1-best accuracy by 23%, improved the Mean Reciprocal Rank (MRR) by 28%, and our interface reduced the user's load by 12%.},
keywords={},
doi={10.1587/transinf.2015EDP7179},
ISSN={1745-1361},
month={November},}
Copy
TY - JOUR
TI - Error Correction Using Long Context Match for Smartphone Speech Recognition
T2 - IEICE TRANSACTIONS on Information
SP - 1932
EP - 1942
AU - Yuan LIANG
AU - Koji IWANO
AU - Koichi SHINODA
PY - 2015
DO - 10.1587/transinf.2015EDP7179
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E98-D
IS - 11
JA - IEICE TRANSACTIONS on Information
Y1 - November 2015
AB - Most error correction interfaces for speech recognition applications on smartphones require the user to first mark an error region and choose the correct word from a candidate list. We propose a simple multimodal interface to make the process more efficient. We develop Long Context Match (LCM) to get candidates that complement the conventional word confusion network (WCN). Assuming that not only the preceding words but also the succeeding words of the error region are validated by users, we use such contexts to search higher-order n-grams corpora for matching word sequences. For this purpose, we also utilize the Web text data. Furthermore, we propose a combination of LCM and WCN (“LCM + WCN”) to provide users with candidate lists that are more relevant than those yielded by WCN alone. We compare our interface with the WCN-based interface on the Corpus of Spontaneous Japanese (CSJ). Our proposed “LCM + WCN” method improved the 1-best accuracy by 23%, improved the Mean Reciprocal Rank (MRR) by 28%, and our interface reduced the user's load by 12%.
ER -