To prevent constraints or defects of a single sensor from malfunctions, this paper proposes a fire detection system based on the Dempster-Shafer theory with multi-sensor technology. The proposed system operates in three stages: measurement, data reception and alarm activation, where an Arduino is tasked with measuring and interpreting the readings from three types of sensors. Sensors under consideration involve smoke, light and temperature detection. All the measured data are wirelessly transmitted to the backend Raspberry Pi for subsequent processing. Within the system, the Raspberry Pi is used to determine the probability of fire events using the Dempster-Shafer theory. We investigate moderate settings of the conflict coefficient and how it plays an essential role in ensuring the plausibility of the system's deduced results. Furthermore, a MySQL database with a web server is deployed on the Raspberry Pi for backlog and data analysis purposes. In addition, the system provides three notification services, including web browsing, smartphone APP, and short message service. For validation, we collected the statistics from field tests conducted in a controllable and safe environment by emulating fire events happening during both daytime and nighttime. Each experiment undergoes the No-fire, On-fire and Post-fire phases. Experimental results show an accuracy of up to 98% in both the No-fire and On-fire phases during the daytime and an accuracy of 97% during the nighttime under reasonable conditions. When we take the three phases into account, the accuracy in the daytime and nighttime increase to 97% and 89%, respectively. Field tests validate the efficiency and accuracy of the proposed system.
Ying-Yao TING
National Kaohsiung First University of Science & Technology
Chi-Wei HSIAO
Lasertec Taiwan, Inc.
Huan-Sheng WANG
National Kaohsiung First University of Science & Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Ying-Yao TING, Chi-Wei HSIAO, Huan-Sheng WANG, "A Data Fusion-Based Fire Detection System" in IEICE TRANSACTIONS on Information,
vol. E101-D, no. 4, pp. 977-984, April 2018, doi: 10.1587/transinf.2016IIP0005.
Abstract: To prevent constraints or defects of a single sensor from malfunctions, this paper proposes a fire detection system based on the Dempster-Shafer theory with multi-sensor technology. The proposed system operates in three stages: measurement, data reception and alarm activation, where an Arduino is tasked with measuring and interpreting the readings from three types of sensors. Sensors under consideration involve smoke, light and temperature detection. All the measured data are wirelessly transmitted to the backend Raspberry Pi for subsequent processing. Within the system, the Raspberry Pi is used to determine the probability of fire events using the Dempster-Shafer theory. We investigate moderate settings of the conflict coefficient and how it plays an essential role in ensuring the plausibility of the system's deduced results. Furthermore, a MySQL database with a web server is deployed on the Raspberry Pi for backlog and data analysis purposes. In addition, the system provides three notification services, including web browsing, smartphone APP, and short message service. For validation, we collected the statistics from field tests conducted in a controllable and safe environment by emulating fire events happening during both daytime and nighttime. Each experiment undergoes the No-fire, On-fire and Post-fire phases. Experimental results show an accuracy of up to 98% in both the No-fire and On-fire phases during the daytime and an accuracy of 97% during the nighttime under reasonable conditions. When we take the three phases into account, the accuracy in the daytime and nighttime increase to 97% and 89%, respectively. Field tests validate the efficiency and accuracy of the proposed system.
URL: https://globals.ieice.org/en_transactions/information/10.1587/transinf.2016IIP0005/_p
Copy
@ARTICLE{e101-d_4_977,
author={Ying-Yao TING, Chi-Wei HSIAO, Huan-Sheng WANG, },
journal={IEICE TRANSACTIONS on Information},
title={A Data Fusion-Based Fire Detection System},
year={2018},
volume={E101-D},
number={4},
pages={977-984},
abstract={To prevent constraints or defects of a single sensor from malfunctions, this paper proposes a fire detection system based on the Dempster-Shafer theory with multi-sensor technology. The proposed system operates in three stages: measurement, data reception and alarm activation, where an Arduino is tasked with measuring and interpreting the readings from three types of sensors. Sensors under consideration involve smoke, light and temperature detection. All the measured data are wirelessly transmitted to the backend Raspberry Pi for subsequent processing. Within the system, the Raspberry Pi is used to determine the probability of fire events using the Dempster-Shafer theory. We investigate moderate settings of the conflict coefficient and how it plays an essential role in ensuring the plausibility of the system's deduced results. Furthermore, a MySQL database with a web server is deployed on the Raspberry Pi for backlog and data analysis purposes. In addition, the system provides three notification services, including web browsing, smartphone APP, and short message service. For validation, we collected the statistics from field tests conducted in a controllable and safe environment by emulating fire events happening during both daytime and nighttime. Each experiment undergoes the No-fire, On-fire and Post-fire phases. Experimental results show an accuracy of up to 98% in both the No-fire and On-fire phases during the daytime and an accuracy of 97% during the nighttime under reasonable conditions. When we take the three phases into account, the accuracy in the daytime and nighttime increase to 97% and 89%, respectively. Field tests validate the efficiency and accuracy of the proposed system.},
keywords={},
doi={10.1587/transinf.2016IIP0005},
ISSN={1745-1361},
month={April},}
Copy
TY - JOUR
TI - A Data Fusion-Based Fire Detection System
T2 - IEICE TRANSACTIONS on Information
SP - 977
EP - 984
AU - Ying-Yao TING
AU - Chi-Wei HSIAO
AU - Huan-Sheng WANG
PY - 2018
DO - 10.1587/transinf.2016IIP0005
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E101-D
IS - 4
JA - IEICE TRANSACTIONS on Information
Y1 - April 2018
AB - To prevent constraints or defects of a single sensor from malfunctions, this paper proposes a fire detection system based on the Dempster-Shafer theory with multi-sensor technology. The proposed system operates in three stages: measurement, data reception and alarm activation, where an Arduino is tasked with measuring and interpreting the readings from three types of sensors. Sensors under consideration involve smoke, light and temperature detection. All the measured data are wirelessly transmitted to the backend Raspberry Pi for subsequent processing. Within the system, the Raspberry Pi is used to determine the probability of fire events using the Dempster-Shafer theory. We investigate moderate settings of the conflict coefficient and how it plays an essential role in ensuring the plausibility of the system's deduced results. Furthermore, a MySQL database with a web server is deployed on the Raspberry Pi for backlog and data analysis purposes. In addition, the system provides three notification services, including web browsing, smartphone APP, and short message service. For validation, we collected the statistics from field tests conducted in a controllable and safe environment by emulating fire events happening during both daytime and nighttime. Each experiment undergoes the No-fire, On-fire and Post-fire phases. Experimental results show an accuracy of up to 98% in both the No-fire and On-fire phases during the daytime and an accuracy of 97% during the nighttime under reasonable conditions. When we take the three phases into account, the accuracy in the daytime and nighttime increase to 97% and 89%, respectively. Field tests validate the efficiency and accuracy of the proposed system.
ER -