Full Text Views
153
The increase in network access devices and demand for high quality of service (QoS) by the users have led to insufficient capacity for the network operators. Moreover, the existing control equipment and mechanisms are not flexible and agile enough for the dynamically changing environment of heterogeneous cellular networks (HetNets). This non-agile control plane is hard to scale with ever increasing traffic demand and has become the performance bottleneck. Furthermore, the new HetNet architecture requires tight coordination and cooperation for the densely deployed small cell base stations, particularly for interference mitigation and dynamic frequency reuse and sharing. These issues further complicate the existing control plane and can cause serious inefficiencies in terms of users' quality of experience and network performance. This article presents an SDN control framework for energy efficient downlink/uplink scheduling in HetNets. The framework decouples the control plane from data plane by means of a logically centralized controller with distributed agents implemented in separate entities of the network (users and base stations). The scheduling problem consists of three sub-problems: (i) user association, (ii) power control, (iii) resource allocation and (iv) interference mitigation. Moreover, these sub-problems are coupled and must be solved simultaneously. We formulate the DL/UL scheduling in HetNet as an optimization problem and use the Markov approximation framework to propose a distributed economical algorithm. Then, we divide the algorithm into three sub-routines for (i) user association, (ii) power control, (iii) resource allocation and (iv) interference mitigation. These sub-routines are then implemented on different agents of the SDN framework. We run extensive simulation to validate our proposal and finally, present the performance analysis.
Seungil MOON
Kyung Hee University
Thant Zin OO
Kyung Hee University
S. M. Ahsan KAZMI
Kyung Hee University
Bang Ju PARK
Gacheon University
Choong Seon HONG
Kyung Hee University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Seungil MOON, Thant Zin OO, S. M. Ahsan KAZMI, Bang Ju PARK, Choong Seon HONG, "SDN-Based Self-Organizing Energy Efficient Downlink/Uplink Scheduling in Heterogeneous Cellular Networks" in IEICE TRANSACTIONS on Information,
vol. E100-D, no. 5, pp. 939-947, May 2017, doi: 10.1587/transinf.2016NTI0002.
Abstract: The increase in network access devices and demand for high quality of service (QoS) by the users have led to insufficient capacity for the network operators. Moreover, the existing control equipment and mechanisms are not flexible and agile enough for the dynamically changing environment of heterogeneous cellular networks (HetNets). This non-agile control plane is hard to scale with ever increasing traffic demand and has become the performance bottleneck. Furthermore, the new HetNet architecture requires tight coordination and cooperation for the densely deployed small cell base stations, particularly for interference mitigation and dynamic frequency reuse and sharing. These issues further complicate the existing control plane and can cause serious inefficiencies in terms of users' quality of experience and network performance. This article presents an SDN control framework for energy efficient downlink/uplink scheduling in HetNets. The framework decouples the control plane from data plane by means of a logically centralized controller with distributed agents implemented in separate entities of the network (users and base stations). The scheduling problem consists of three sub-problems: (i) user association, (ii) power control, (iii) resource allocation and (iv) interference mitigation. Moreover, these sub-problems are coupled and must be solved simultaneously. We formulate the DL/UL scheduling in HetNet as an optimization problem and use the Markov approximation framework to propose a distributed economical algorithm. Then, we divide the algorithm into three sub-routines for (i) user association, (ii) power control, (iii) resource allocation and (iv) interference mitigation. These sub-routines are then implemented on different agents of the SDN framework. We run extensive simulation to validate our proposal and finally, present the performance analysis.
URL: https://globals.ieice.org/en_transactions/information/10.1587/transinf.2016NTI0002/_p
Copy
@ARTICLE{e100-d_5_939,
author={Seungil MOON, Thant Zin OO, S. M. Ahsan KAZMI, Bang Ju PARK, Choong Seon HONG, },
journal={IEICE TRANSACTIONS on Information},
title={SDN-Based Self-Organizing Energy Efficient Downlink/Uplink Scheduling in Heterogeneous Cellular Networks},
year={2017},
volume={E100-D},
number={5},
pages={939-947},
abstract={The increase in network access devices and demand for high quality of service (QoS) by the users have led to insufficient capacity for the network operators. Moreover, the existing control equipment and mechanisms are not flexible and agile enough for the dynamically changing environment of heterogeneous cellular networks (HetNets). This non-agile control plane is hard to scale with ever increasing traffic demand and has become the performance bottleneck. Furthermore, the new HetNet architecture requires tight coordination and cooperation for the densely deployed small cell base stations, particularly for interference mitigation and dynamic frequency reuse and sharing. These issues further complicate the existing control plane and can cause serious inefficiencies in terms of users' quality of experience and network performance. This article presents an SDN control framework for energy efficient downlink/uplink scheduling in HetNets. The framework decouples the control plane from data plane by means of a logically centralized controller with distributed agents implemented in separate entities of the network (users and base stations). The scheduling problem consists of three sub-problems: (i) user association, (ii) power control, (iii) resource allocation and (iv) interference mitigation. Moreover, these sub-problems are coupled and must be solved simultaneously. We formulate the DL/UL scheduling in HetNet as an optimization problem and use the Markov approximation framework to propose a distributed economical algorithm. Then, we divide the algorithm into three sub-routines for (i) user association, (ii) power control, (iii) resource allocation and (iv) interference mitigation. These sub-routines are then implemented on different agents of the SDN framework. We run extensive simulation to validate our proposal and finally, present the performance analysis.},
keywords={},
doi={10.1587/transinf.2016NTI0002},
ISSN={1745-1361},
month={May},}
Copy
TY - JOUR
TI - SDN-Based Self-Organizing Energy Efficient Downlink/Uplink Scheduling in Heterogeneous Cellular Networks
T2 - IEICE TRANSACTIONS on Information
SP - 939
EP - 947
AU - Seungil MOON
AU - Thant Zin OO
AU - S. M. Ahsan KAZMI
AU - Bang Ju PARK
AU - Choong Seon HONG
PY - 2017
DO - 10.1587/transinf.2016NTI0002
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E100-D
IS - 5
JA - IEICE TRANSACTIONS on Information
Y1 - May 2017
AB - The increase in network access devices and demand for high quality of service (QoS) by the users have led to insufficient capacity for the network operators. Moreover, the existing control equipment and mechanisms are not flexible and agile enough for the dynamically changing environment of heterogeneous cellular networks (HetNets). This non-agile control plane is hard to scale with ever increasing traffic demand and has become the performance bottleneck. Furthermore, the new HetNet architecture requires tight coordination and cooperation for the densely deployed small cell base stations, particularly for interference mitigation and dynamic frequency reuse and sharing. These issues further complicate the existing control plane and can cause serious inefficiencies in terms of users' quality of experience and network performance. This article presents an SDN control framework for energy efficient downlink/uplink scheduling in HetNets. The framework decouples the control plane from data plane by means of a logically centralized controller with distributed agents implemented in separate entities of the network (users and base stations). The scheduling problem consists of three sub-problems: (i) user association, (ii) power control, (iii) resource allocation and (iv) interference mitigation. Moreover, these sub-problems are coupled and must be solved simultaneously. We formulate the DL/UL scheduling in HetNet as an optimization problem and use the Markov approximation framework to propose a distributed economical algorithm. Then, we divide the algorithm into three sub-routines for (i) user association, (ii) power control, (iii) resource allocation and (iv) interference mitigation. These sub-routines are then implemented on different agents of the SDN framework. We run extensive simulation to validate our proposal and finally, present the performance analysis.
ER -