Variable Pipeline Cool Mega Array (VPCMA) is a low power Coarse Grained Reconfigurable Architecture (CGRA) based on the concept of CMA (Cool Mega Array). It provides a pipeline structure in the PE array that can be configured so as to fit target algorithms and required performance. Also, VPCMA uses the Silicon On Thin Buried oxide (SOTB) technology, a type of Fully Depleted Silicon On Insulator (FDSOI), so it is possible to control its body bias voltage to provide a balance between performance and leakage power. In this paper, we study the optimization of the VPCMA body bias while considering simultaneously its variable pipeline structure. Through evaluations, we can observe that it is possible to achieve an average reduction of energy consumption, for the studied applications, of 17.75% and 10.49% when compared to respectively the zero bias (without body bias control) and the uniform (control of the whole PE array) cases, while respecting performance constraints. Besides, it is observed that, with appropriate body bias control, it is possible to extend the possible performance, hence enabling broader trade-off analyzes between consumption and performance. Considering the dynamic power as well as the static power, more appropriate pipeline structure and body bias voltage can be obtained. In addition, when the control of VDD is integrated, higher performance can be achieved with a steady increase of the power. These promising results show that applying an adequate optimization technique for the body bias control while simultaneously considering pipeline structures can not only enable further power reduction than previous methods, but also allow more trade-off analysis possibilities.
Takuya KOJIMA
Keio University
Naoki ANDO
Keio University
Hayate OKUHARA
Keio University
Ng. Anh Vu DOAN
Keio University
Hideharu AMANO
Keio University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Takuya KOJIMA, Naoki ANDO, Hayate OKUHARA, Ng. Anh Vu DOAN, Hideharu AMANO, "Optimization of Body Biasing for Variable Pipelined Coarse-Grained Reconfigurable Architectures" in IEICE TRANSACTIONS on Information,
vol. E101-D, no. 6, pp. 1532-1540, June 2018, doi: 10.1587/transinf.2017EDP7308.
Abstract: Variable Pipeline Cool Mega Array (VPCMA) is a low power Coarse Grained Reconfigurable Architecture (CGRA) based on the concept of CMA (Cool Mega Array). It provides a pipeline structure in the PE array that can be configured so as to fit target algorithms and required performance. Also, VPCMA uses the Silicon On Thin Buried oxide (SOTB) technology, a type of Fully Depleted Silicon On Insulator (FDSOI), so it is possible to control its body bias voltage to provide a balance between performance and leakage power. In this paper, we study the optimization of the VPCMA body bias while considering simultaneously its variable pipeline structure. Through evaluations, we can observe that it is possible to achieve an average reduction of energy consumption, for the studied applications, of 17.75% and 10.49% when compared to respectively the zero bias (without body bias control) and the uniform (control of the whole PE array) cases, while respecting performance constraints. Besides, it is observed that, with appropriate body bias control, it is possible to extend the possible performance, hence enabling broader trade-off analyzes between consumption and performance. Considering the dynamic power as well as the static power, more appropriate pipeline structure and body bias voltage can be obtained. In addition, when the control of VDD is integrated, higher performance can be achieved with a steady increase of the power. These promising results show that applying an adequate optimization technique for the body bias control while simultaneously considering pipeline structures can not only enable further power reduction than previous methods, but also allow more trade-off analysis possibilities.
URL: https://globals.ieice.org/en_transactions/information/10.1587/transinf.2017EDP7308/_p
Copy
@ARTICLE{e101-d_6_1532,
author={Takuya KOJIMA, Naoki ANDO, Hayate OKUHARA, Ng. Anh Vu DOAN, Hideharu AMANO, },
journal={IEICE TRANSACTIONS on Information},
title={Optimization of Body Biasing for Variable Pipelined Coarse-Grained Reconfigurable Architectures},
year={2018},
volume={E101-D},
number={6},
pages={1532-1540},
abstract={Variable Pipeline Cool Mega Array (VPCMA) is a low power Coarse Grained Reconfigurable Architecture (CGRA) based on the concept of CMA (Cool Mega Array). It provides a pipeline structure in the PE array that can be configured so as to fit target algorithms and required performance. Also, VPCMA uses the Silicon On Thin Buried oxide (SOTB) technology, a type of Fully Depleted Silicon On Insulator (FDSOI), so it is possible to control its body bias voltage to provide a balance between performance and leakage power. In this paper, we study the optimization of the VPCMA body bias while considering simultaneously its variable pipeline structure. Through evaluations, we can observe that it is possible to achieve an average reduction of energy consumption, for the studied applications, of 17.75% and 10.49% when compared to respectively the zero bias (without body bias control) and the uniform (control of the whole PE array) cases, while respecting performance constraints. Besides, it is observed that, with appropriate body bias control, it is possible to extend the possible performance, hence enabling broader trade-off analyzes between consumption and performance. Considering the dynamic power as well as the static power, more appropriate pipeline structure and body bias voltage can be obtained. In addition, when the control of VDD is integrated, higher performance can be achieved with a steady increase of the power. These promising results show that applying an adequate optimization technique for the body bias control while simultaneously considering pipeline structures can not only enable further power reduction than previous methods, but also allow more trade-off analysis possibilities.},
keywords={},
doi={10.1587/transinf.2017EDP7308},
ISSN={1745-1361},
month={June},}
Copy
TY - JOUR
TI - Optimization of Body Biasing for Variable Pipelined Coarse-Grained Reconfigurable Architectures
T2 - IEICE TRANSACTIONS on Information
SP - 1532
EP - 1540
AU - Takuya KOJIMA
AU - Naoki ANDO
AU - Hayate OKUHARA
AU - Ng. Anh Vu DOAN
AU - Hideharu AMANO
PY - 2018
DO - 10.1587/transinf.2017EDP7308
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E101-D
IS - 6
JA - IEICE TRANSACTIONS on Information
Y1 - June 2018
AB - Variable Pipeline Cool Mega Array (VPCMA) is a low power Coarse Grained Reconfigurable Architecture (CGRA) based on the concept of CMA (Cool Mega Array). It provides a pipeline structure in the PE array that can be configured so as to fit target algorithms and required performance. Also, VPCMA uses the Silicon On Thin Buried oxide (SOTB) technology, a type of Fully Depleted Silicon On Insulator (FDSOI), so it is possible to control its body bias voltage to provide a balance between performance and leakage power. In this paper, we study the optimization of the VPCMA body bias while considering simultaneously its variable pipeline structure. Through evaluations, we can observe that it is possible to achieve an average reduction of energy consumption, for the studied applications, of 17.75% and 10.49% when compared to respectively the zero bias (without body bias control) and the uniform (control of the whole PE array) cases, while respecting performance constraints. Besides, it is observed that, with appropriate body bias control, it is possible to extend the possible performance, hence enabling broader trade-off analyzes between consumption and performance. Considering the dynamic power as well as the static power, more appropriate pipeline structure and body bias voltage can be obtained. In addition, when the control of VDD is integrated, higher performance can be achieved with a steady increase of the power. These promising results show that applying an adequate optimization technique for the body bias control while simultaneously considering pipeline structures can not only enable further power reduction than previous methods, but also allow more trade-off analysis possibilities.
ER -