This paper introduces a new dynamic 3D mesh representation that provides 3D animation support of progressive display and drastically reduces the amount of storage space required for 3D animation. The primary purpose of progressive display is to allow viewers to get animation as quickly as possible, rather than having to wait until all data has been downloaded. In other words, this method allows for the simultaneous transmission and playing of 3D animation. Experiments show that coarser 3D animation could be reconstructed with as little as 150 KB of data transferred. Using the sustained transmission of refined operators, viewers feel that resolution approaches that of the original animation. The methods used in this study are based on a compression technique commonly used in 3D animation - clustered principle component analysis, using the linearly independent rules of principle components, so that animation can be stored using smaller amounts of data. This method can be coupled with streaming technology to reconstruct animation through iterative updating. Each principle component is a portion of the streaming data to be stored and transmitted after compression, as well as a refined operator during the animation update process. This paper considers errors and rate-distortion optimization, and introduces weighted progressive transmitting (WPT), using refined sequences from optimized principle components, so that each refinement yields an increase in quality. In other words, with identical data size, this method allows each principle component to reduce allowable error and provide the highest quality 3D animation.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Bin-Shyan JONG, Chi-Kang KAO, Juin-Ling TSENG, Tsong-Wuu LIN, "Compression of Dynamic 3D Meshes and Progressive Displaying" in IEICE TRANSACTIONS on Information,
vol. E94-D, no. 11, pp. 2271-2279, November 2011, doi: 10.1587/transinf.E94.D.2271.
Abstract: This paper introduces a new dynamic 3D mesh representation that provides 3D animation support of progressive display and drastically reduces the amount of storage space required for 3D animation. The primary purpose of progressive display is to allow viewers to get animation as quickly as possible, rather than having to wait until all data has been downloaded. In other words, this method allows for the simultaneous transmission and playing of 3D animation. Experiments show that coarser 3D animation could be reconstructed with as little as 150 KB of data transferred. Using the sustained transmission of refined operators, viewers feel that resolution approaches that of the original animation. The methods used in this study are based on a compression technique commonly used in 3D animation - clustered principle component analysis, using the linearly independent rules of principle components, so that animation can be stored using smaller amounts of data. This method can be coupled with streaming technology to reconstruct animation through iterative updating. Each principle component is a portion of the streaming data to be stored and transmitted after compression, as well as a refined operator during the animation update process. This paper considers errors and rate-distortion optimization, and introduces weighted progressive transmitting (WPT), using refined sequences from optimized principle components, so that each refinement yields an increase in quality. In other words, with identical data size, this method allows each principle component to reduce allowable error and provide the highest quality 3D animation.
URL: https://globals.ieice.org/en_transactions/information/10.1587/transinf.E94.D.2271/_p
Copy
@ARTICLE{e94-d_11_2271,
author={Bin-Shyan JONG, Chi-Kang KAO, Juin-Ling TSENG, Tsong-Wuu LIN, },
journal={IEICE TRANSACTIONS on Information},
title={Compression of Dynamic 3D Meshes and Progressive Displaying},
year={2011},
volume={E94-D},
number={11},
pages={2271-2279},
abstract={This paper introduces a new dynamic 3D mesh representation that provides 3D animation support of progressive display and drastically reduces the amount of storage space required for 3D animation. The primary purpose of progressive display is to allow viewers to get animation as quickly as possible, rather than having to wait until all data has been downloaded. In other words, this method allows for the simultaneous transmission and playing of 3D animation. Experiments show that coarser 3D animation could be reconstructed with as little as 150 KB of data transferred. Using the sustained transmission of refined operators, viewers feel that resolution approaches that of the original animation. The methods used in this study are based on a compression technique commonly used in 3D animation - clustered principle component analysis, using the linearly independent rules of principle components, so that animation can be stored using smaller amounts of data. This method can be coupled with streaming technology to reconstruct animation through iterative updating. Each principle component is a portion of the streaming data to be stored and transmitted after compression, as well as a refined operator during the animation update process. This paper considers errors and rate-distortion optimization, and introduces weighted progressive transmitting (WPT), using refined sequences from optimized principle components, so that each refinement yields an increase in quality. In other words, with identical data size, this method allows each principle component to reduce allowable error and provide the highest quality 3D animation.},
keywords={},
doi={10.1587/transinf.E94.D.2271},
ISSN={1745-1361},
month={November},}
Copy
TY - JOUR
TI - Compression of Dynamic 3D Meshes and Progressive Displaying
T2 - IEICE TRANSACTIONS on Information
SP - 2271
EP - 2279
AU - Bin-Shyan JONG
AU - Chi-Kang KAO
AU - Juin-Ling TSENG
AU - Tsong-Wuu LIN
PY - 2011
DO - 10.1587/transinf.E94.D.2271
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E94-D
IS - 11
JA - IEICE TRANSACTIONS on Information
Y1 - November 2011
AB - This paper introduces a new dynamic 3D mesh representation that provides 3D animation support of progressive display and drastically reduces the amount of storage space required for 3D animation. The primary purpose of progressive display is to allow viewers to get animation as quickly as possible, rather than having to wait until all data has been downloaded. In other words, this method allows for the simultaneous transmission and playing of 3D animation. Experiments show that coarser 3D animation could be reconstructed with as little as 150 KB of data transferred. Using the sustained transmission of refined operators, viewers feel that resolution approaches that of the original animation. The methods used in this study are based on a compression technique commonly used in 3D animation - clustered principle component analysis, using the linearly independent rules of principle components, so that animation can be stored using smaller amounts of data. This method can be coupled with streaming technology to reconstruct animation through iterative updating. Each principle component is a portion of the streaming data to be stored and transmitted after compression, as well as a refined operator during the animation update process. This paper considers errors and rate-distortion optimization, and introduces weighted progressive transmitting (WPT), using refined sequences from optimized principle components, so that each refinement yields an increase in quality. In other words, with identical data size, this method allows each principle component to reduce allowable error and provide the highest quality 3D animation.
ER -