In this paper, we introduce generalized feed-forward shift registers (GF2SR) to apply them to secure and testable scan design. Previously, we introduced SR-equivalents and SR-quasi-equivalents which can be used in secure and testable scan design, and showed that inversion-inserted linear feed-forward shift registers (I2LF2SR) are useful circuits for the secure and testable scan design. GF2SR is an extension of I2LF2SR and the class is much wider than that of I2LF2SR. Since the cardinality of the class of GF2SR is much larger than that of I2LF2SR, the security level of scan design with GF2SR is much higher than that of I2LF2SR. We consider how to control/observe GF2SR to guarantee easy scan-in/out operations, i.e., state-justification and state-identification problems are considered. Both scan-in and scan-out operations can be overlapped in the same way as the conventional scan testing, and hence the test sequence for the proposed scan design is of the same length as the conventional scan design. A program called WAGSR (Web Application for Generalized feed-forward Shift Registers) is presented to solve those problems.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Katsuya FUJIWARA, Hideo FUJIWARA, "Generalized Feed Forward Shift Registers and Their Application to Secure Scan Design" in IEICE TRANSACTIONS on Information,
vol. E96-D, no. 5, pp. 1125-1133, May 2013, doi: 10.1587/transinf.E96.D.1125.
Abstract: In this paper, we introduce generalized feed-forward shift registers (GF2SR) to apply them to secure and testable scan design. Previously, we introduced SR-equivalents and SR-quasi-equivalents which can be used in secure and testable scan design, and showed that inversion-inserted linear feed-forward shift registers (I2LF2SR) are useful circuits for the secure and testable scan design. GF2SR is an extension of I2LF2SR and the class is much wider than that of I2LF2SR. Since the cardinality of the class of GF2SR is much larger than that of I2LF2SR, the security level of scan design with GF2SR is much higher than that of I2LF2SR. We consider how to control/observe GF2SR to guarantee easy scan-in/out operations, i.e., state-justification and state-identification problems are considered. Both scan-in and scan-out operations can be overlapped in the same way as the conventional scan testing, and hence the test sequence for the proposed scan design is of the same length as the conventional scan design. A program called WAGSR (Web Application for Generalized feed-forward Shift Registers) is presented to solve those problems.
URL: https://globals.ieice.org/en_transactions/information/10.1587/transinf.E96.D.1125/_p
Copy
@ARTICLE{e96-d_5_1125,
author={Katsuya FUJIWARA, Hideo FUJIWARA, },
journal={IEICE TRANSACTIONS on Information},
title={Generalized Feed Forward Shift Registers and Their Application to Secure Scan Design},
year={2013},
volume={E96-D},
number={5},
pages={1125-1133},
abstract={In this paper, we introduce generalized feed-forward shift registers (GF2SR) to apply them to secure and testable scan design. Previously, we introduced SR-equivalents and SR-quasi-equivalents which can be used in secure and testable scan design, and showed that inversion-inserted linear feed-forward shift registers (I2LF2SR) are useful circuits for the secure and testable scan design. GF2SR is an extension of I2LF2SR and the class is much wider than that of I2LF2SR. Since the cardinality of the class of GF2SR is much larger than that of I2LF2SR, the security level of scan design with GF2SR is much higher than that of I2LF2SR. We consider how to control/observe GF2SR to guarantee easy scan-in/out operations, i.e., state-justification and state-identification problems are considered. Both scan-in and scan-out operations can be overlapped in the same way as the conventional scan testing, and hence the test sequence for the proposed scan design is of the same length as the conventional scan design. A program called WAGSR (Web Application for Generalized feed-forward Shift Registers) is presented to solve those problems.},
keywords={},
doi={10.1587/transinf.E96.D.1125},
ISSN={1745-1361},
month={May},}
Copy
TY - JOUR
TI - Generalized Feed Forward Shift Registers and Their Application to Secure Scan Design
T2 - IEICE TRANSACTIONS on Information
SP - 1125
EP - 1133
AU - Katsuya FUJIWARA
AU - Hideo FUJIWARA
PY - 2013
DO - 10.1587/transinf.E96.D.1125
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E96-D
IS - 5
JA - IEICE TRANSACTIONS on Information
Y1 - May 2013
AB - In this paper, we introduce generalized feed-forward shift registers (GF2SR) to apply them to secure and testable scan design. Previously, we introduced SR-equivalents and SR-quasi-equivalents which can be used in secure and testable scan design, and showed that inversion-inserted linear feed-forward shift registers (I2LF2SR) are useful circuits for the secure and testable scan design. GF2SR is an extension of I2LF2SR and the class is much wider than that of I2LF2SR. Since the cardinality of the class of GF2SR is much larger than that of I2LF2SR, the security level of scan design with GF2SR is much higher than that of I2LF2SR. We consider how to control/observe GF2SR to guarantee easy scan-in/out operations, i.e., state-justification and state-identification problems are considered. Both scan-in and scan-out operations can be overlapped in the same way as the conventional scan testing, and hence the test sequence for the proposed scan design is of the same length as the conventional scan design. A program called WAGSR (Web Application for Generalized feed-forward Shift Registers) is presented to solve those problems.
ER -