One-Class Naïve Bayesian Classifier for Toll Fraud Detection

Pilsung KANG

  • Full Text Views

    0

  • Cite this

Summary :

In this paper, a one-class Naïve Bayesian classifier (One-NB) for detecting toll frauds in a VoIP service is proposed. Since toll frauds occur irregularly and their patterns are too diverse to be generalized as one class, conventional binary-class classification is not effective for toll fraud detection. In addition, conventional novelty detection algorithms have struggled with optimizing their parameters to achieve a stable detection performance. In order to resolve the above limitations, the original Naïve Bayesian classifier is modified to handle the novelty detection problem. In addition, a genetic algorithm (GA) is employed to increase efficiency by selecting significant variables. In order to verify the performance of One-NB, comparative experiments using five well-known novelty detectors and three binary classifiers are conducted over real call data records (CDRs) provided by a Korean VoIP service company. The experimental results show that One-NB detects toll frauds more accurately than other novelty detectors and binary classifiers when the toll frauds rates are relatively low. In addition, The performance of One-NB is found to be more stable than the benchmark methods since no parameter optimization is required for One-NB.

Publication
IEICE TRANSACTIONS on Information Vol.E97-D No.5 pp.1353-1357
Publication Date
2014/05/01
Publicized
Online ISSN
1745-1361
DOI
10.1587/transinf.E97.D.1353
Type of Manuscript
LETTER
Category
Artificial Intelligence, Data Mining

Authors

Pilsung KANG
  Seoul National Univeristy of Science and Technology

Keyword

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.