In this paper, a one-class Naïve Bayesian classifier (One-NB) for detecting toll frauds in a VoIP service is proposed. Since toll frauds occur irregularly and their patterns are too diverse to be generalized as one class, conventional binary-class classification is not effective for toll fraud detection. In addition, conventional novelty detection algorithms have struggled with optimizing their parameters to achieve a stable detection performance. In order to resolve the above limitations, the original Naïve Bayesian classifier is modified to handle the novelty detection problem. In addition, a genetic algorithm (GA) is employed to increase efficiency by selecting significant variables. In order to verify the performance of One-NB, comparative experiments using five well-known novelty detectors and three binary classifiers are conducted over real call data records (CDRs) provided by a Korean VoIP service company. The experimental results show that One-NB detects toll frauds more accurately than other novelty detectors and binary classifiers when the toll frauds rates are relatively low. In addition, The performance of One-NB is found to be more stable than the benchmark methods since no parameter optimization is required for One-NB.
Pilsung KANG
Seoul National Univeristy of Science and Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Pilsung KANG, "One-Class Naïve Bayesian Classifier for Toll Fraud Detection" in IEICE TRANSACTIONS on Information,
vol. E97-D, no. 5, pp. 1353-1357, May 2014, doi: 10.1587/transinf.E97.D.1353.
Abstract: In this paper, a one-class Naïve Bayesian classifier (One-NB) for detecting toll frauds in a VoIP service is proposed. Since toll frauds occur irregularly and their patterns are too diverse to be generalized as one class, conventional binary-class classification is not effective for toll fraud detection. In addition, conventional novelty detection algorithms have struggled with optimizing their parameters to achieve a stable detection performance. In order to resolve the above limitations, the original Naïve Bayesian classifier is modified to handle the novelty detection problem. In addition, a genetic algorithm (GA) is employed to increase efficiency by selecting significant variables. In order to verify the performance of One-NB, comparative experiments using five well-known novelty detectors and three binary classifiers are conducted over real call data records (CDRs) provided by a Korean VoIP service company. The experimental results show that One-NB detects toll frauds more accurately than other novelty detectors and binary classifiers when the toll frauds rates are relatively low. In addition, The performance of One-NB is found to be more stable than the benchmark methods since no parameter optimization is required for One-NB.
URL: https://globals.ieice.org/en_transactions/information/10.1587/transinf.E97.D.1353/_p
Copy
@ARTICLE{e97-d_5_1353,
author={Pilsung KANG, },
journal={IEICE TRANSACTIONS on Information},
title={One-Class Naïve Bayesian Classifier for Toll Fraud Detection},
year={2014},
volume={E97-D},
number={5},
pages={1353-1357},
abstract={In this paper, a one-class Naïve Bayesian classifier (One-NB) for detecting toll frauds in a VoIP service is proposed. Since toll frauds occur irregularly and their patterns are too diverse to be generalized as one class, conventional binary-class classification is not effective for toll fraud detection. In addition, conventional novelty detection algorithms have struggled with optimizing their parameters to achieve a stable detection performance. In order to resolve the above limitations, the original Naïve Bayesian classifier is modified to handle the novelty detection problem. In addition, a genetic algorithm (GA) is employed to increase efficiency by selecting significant variables. In order to verify the performance of One-NB, comparative experiments using five well-known novelty detectors and three binary classifiers are conducted over real call data records (CDRs) provided by a Korean VoIP service company. The experimental results show that One-NB detects toll frauds more accurately than other novelty detectors and binary classifiers when the toll frauds rates are relatively low. In addition, The performance of One-NB is found to be more stable than the benchmark methods since no parameter optimization is required for One-NB.},
keywords={},
doi={10.1587/transinf.E97.D.1353},
ISSN={1745-1361},
month={May},}
Copy
TY - JOUR
TI - One-Class Naïve Bayesian Classifier for Toll Fraud Detection
T2 - IEICE TRANSACTIONS on Information
SP - 1353
EP - 1357
AU - Pilsung KANG
PY - 2014
DO - 10.1587/transinf.E97.D.1353
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E97-D
IS - 5
JA - IEICE TRANSACTIONS on Information
Y1 - May 2014
AB - In this paper, a one-class Naïve Bayesian classifier (One-NB) for detecting toll frauds in a VoIP service is proposed. Since toll frauds occur irregularly and their patterns are too diverse to be generalized as one class, conventional binary-class classification is not effective for toll fraud detection. In addition, conventional novelty detection algorithms have struggled with optimizing their parameters to achieve a stable detection performance. In order to resolve the above limitations, the original Naïve Bayesian classifier is modified to handle the novelty detection problem. In addition, a genetic algorithm (GA) is employed to increase efficiency by selecting significant variables. In order to verify the performance of One-NB, comparative experiments using five well-known novelty detectors and three binary classifiers are conducted over real call data records (CDRs) provided by a Korean VoIP service company. The experimental results show that One-NB detects toll frauds more accurately than other novelty detectors and binary classifiers when the toll frauds rates are relatively low. In addition, The performance of One-NB is found to be more stable than the benchmark methods since no parameter optimization is required for One-NB.
ER -