In a nonlinear dynamical circuit with sinusoidal external source, we frequently encounter various bifurcation phenomena of steady states such as jump and hysteresis phenomenon, frequency entrainment, etc. The steady state corresponds to a periodic solution of the circuit equations described by nonlinear ordinary differential equations. The generic bifurcations of the periodic solution are known as codimension one bifurcations: tangent bifurcation, period doubling bifurcation and the Hopf bifurcation. At a bifurcation value of parameters, if a periodic solution satisfies two bifurcation conditions, then the bifurcation refers as a codimension two bifurcation. This type of bifurcation may be observed in high dimensional systems with several parameters. In Ref.(1), we have classified codimension two bifurcations and proposed a numerical method for obtaining the bifurcation parameters. To illustrate the occurrences of some types of codimension two bifurcations, we analyzed a circuit described by 3-dimensional differential equation. For 3-dimensional system, however, two types of bifurcations never occur. In this paper, we shall treat 4-dimensional system as an illustrating example. In this example, we shall see all types of codimension two bifurcations defined in this paper. For a global property of bifurcation set of parameters, it is found that a type of codimension two bifurcation occurs successively together with the period doubling cascade and the Hopf bifurcations. This bifurcation sequence may cause a new route to the generation of chaotic oscillations.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Tetsuya YOSHINAGA, Hiroshi KAWAKAMI, "Codimension Two Bifurcation Problems in Forced Nonlinear Circuits" in IEICE TRANSACTIONS on transactions,
vol. E73-E, no. 6, pp. 817-824, June 1990, doi: .
Abstract: In a nonlinear dynamical circuit with sinusoidal external source, we frequently encounter various bifurcation phenomena of steady states such as jump and hysteresis phenomenon, frequency entrainment, etc. The steady state corresponds to a periodic solution of the circuit equations described by nonlinear ordinary differential equations. The generic bifurcations of the periodic solution are known as codimension one bifurcations: tangent bifurcation, period doubling bifurcation and the Hopf bifurcation. At a bifurcation value of parameters, if a periodic solution satisfies two bifurcation conditions, then the bifurcation refers as a codimension two bifurcation. This type of bifurcation may be observed in high dimensional systems with several parameters. In Ref.(1), we have classified codimension two bifurcations and proposed a numerical method for obtaining the bifurcation parameters. To illustrate the occurrences of some types of codimension two bifurcations, we analyzed a circuit described by 3-dimensional differential equation. For 3-dimensional system, however, two types of bifurcations never occur. In this paper, we shall treat 4-dimensional system as an illustrating example. In this example, we shall see all types of codimension two bifurcations defined in this paper. For a global property of bifurcation set of parameters, it is found that a type of codimension two bifurcation occurs successively together with the period doubling cascade and the Hopf bifurcations. This bifurcation sequence may cause a new route to the generation of chaotic oscillations.
URL: https://globals.ieice.org/en_transactions/transactions/10.1587/e73-e_6_817/_p
Copy
@ARTICLE{e73-e_6_817,
author={Tetsuya YOSHINAGA, Hiroshi KAWAKAMI, },
journal={IEICE TRANSACTIONS on transactions},
title={Codimension Two Bifurcation Problems in Forced Nonlinear Circuits},
year={1990},
volume={E73-E},
number={6},
pages={817-824},
abstract={In a nonlinear dynamical circuit with sinusoidal external source, we frequently encounter various bifurcation phenomena of steady states such as jump and hysteresis phenomenon, frequency entrainment, etc. The steady state corresponds to a periodic solution of the circuit equations described by nonlinear ordinary differential equations. The generic bifurcations of the periodic solution are known as codimension one bifurcations: tangent bifurcation, period doubling bifurcation and the Hopf bifurcation. At a bifurcation value of parameters, if a periodic solution satisfies two bifurcation conditions, then the bifurcation refers as a codimension two bifurcation. This type of bifurcation may be observed in high dimensional systems with several parameters. In Ref.(1), we have classified codimension two bifurcations and proposed a numerical method for obtaining the bifurcation parameters. To illustrate the occurrences of some types of codimension two bifurcations, we analyzed a circuit described by 3-dimensional differential equation. For 3-dimensional system, however, two types of bifurcations never occur. In this paper, we shall treat 4-dimensional system as an illustrating example. In this example, we shall see all types of codimension two bifurcations defined in this paper. For a global property of bifurcation set of parameters, it is found that a type of codimension two bifurcation occurs successively together with the period doubling cascade and the Hopf bifurcations. This bifurcation sequence may cause a new route to the generation of chaotic oscillations.},
keywords={},
doi={},
ISSN={},
month={June},}
Copy
TY - JOUR
TI - Codimension Two Bifurcation Problems in Forced Nonlinear Circuits
T2 - IEICE TRANSACTIONS on transactions
SP - 817
EP - 824
AU - Tetsuya YOSHINAGA
AU - Hiroshi KAWAKAMI
PY - 1990
DO -
JO - IEICE TRANSACTIONS on transactions
SN -
VL - E73-E
IS - 6
JA - IEICE TRANSACTIONS on transactions
Y1 - June 1990
AB - In a nonlinear dynamical circuit with sinusoidal external source, we frequently encounter various bifurcation phenomena of steady states such as jump and hysteresis phenomenon, frequency entrainment, etc. The steady state corresponds to a periodic solution of the circuit equations described by nonlinear ordinary differential equations. The generic bifurcations of the periodic solution are known as codimension one bifurcations: tangent bifurcation, period doubling bifurcation and the Hopf bifurcation. At a bifurcation value of parameters, if a periodic solution satisfies two bifurcation conditions, then the bifurcation refers as a codimension two bifurcation. This type of bifurcation may be observed in high dimensional systems with several parameters. In Ref.(1), we have classified codimension two bifurcations and proposed a numerical method for obtaining the bifurcation parameters. To illustrate the occurrences of some types of codimension two bifurcations, we analyzed a circuit described by 3-dimensional differential equation. For 3-dimensional system, however, two types of bifurcations never occur. In this paper, we shall treat 4-dimensional system as an illustrating example. In this example, we shall see all types of codimension two bifurcations defined in this paper. For a global property of bifurcation set of parameters, it is found that a type of codimension two bifurcation occurs successively together with the period doubling cascade and the Hopf bifurcations. This bifurcation sequence may cause a new route to the generation of chaotic oscillations.
ER -