1-2hit |
Chang-Kyung SEONG Seung-Woo LEE Woo-Young CHOI
We propose a new Clock and Data Recovery (CDR) circuit for burst-mode applications. It can recover clock signals after two data transitions and endure long sequence of consecutive identical digits. Two Digital Phase Aligners (DPAs), triggered by rising or falling edges of input data, recover clock signals, which are then combined by a phase interpolator. This configuration reduces the RMS jitters of the recovered clock by 30% and doubles the maximum run length compared to a previously reported DPA CDR. A prototype chip is demonstrated with 0.18-µm CMOS technology. Measurement results show that the chip operates without any bit error for 1.25-Gb/s 231-1 PRBS with 200-ppm frequency offset and recovers clock and data after two clock cycles.
Chang-Kyung SEONG Seung-Woo LEE Woo-Young CHOI
A new 1.25-Gb/s digitally-controlled dual-loop clock and data recovery circuit is realized. To overcome jitter problems caused by the phase resolution limit, the CDR has two phase generation stages: coarse generation by a phase interpolator and fine generation by a variable delay buffer. The performance of the proposed CDR was verified by behavioral and transistor-level simulations. A prototype CDR chip fabricated with 0.18 µm CMOS process shows error-free operation for 400 ppm frequency offset. The chip occupies 165255 µm2 and consumes 17.8 mW.