Author Search Result

[Author] Chanon WARISARN(7hit)

1-7hit
  • A Recorded-Bit Patterning Scheme with Accumulated Weight Decision for Bit-Patterned Media Recording

    Autthasith ARRAYANGKOOL  Chanon WARISARN  Piya KOVINTAVEWAT  

     
    PAPER

      Vol:
    E96-C No:12
      Page(s):
    1490-1496

    To achieve high recording density in a bit-patterned media recording system, the spacing between data bit islands in both the along-track and the across-track directions must be decreased, thus leading to the increase of two-dimensional (2D) interference. One way to reduce the 2D interference is to apply a 2D coding scheme on a data sequence before recording; however, this method usually requires many redundant bits, thus lowering a code rate. Therefore, we propose a novel 2D coding scheme referred to as a recorded-bit patterning (RBP) scheme to mitigate the 2D interference, which requires no redundant bits at the expense of using more buffer memory. Specifically, an input data sequence is first split into three tracks in which will then be rotated to find the best 3-track data pattern based on a look-up table before recording, such that the shifted data tracks yield the least effect of 2D interference in the readback signal. Numerical results indicate that the proposed RBP scheme provides a significant performance improvement if compared to a conventional system (without 2D coding), especially when the recording density is high and/or the position jitter noise is large.

  • A Simple Inter-Track Interference Subtraction Technique in Bit-Patterned Media Recording (BPMR) Systems

    Chaiwat BUAJONG  Chanon WARISARN  

     
    PAPER-Storage Technology

      Vol:
    E101-C No:5
      Page(s):
    404-408

    In this paper, we demonstrate how to subtract the intertrack interference (ITI) before the decoding process in multi-track multi-head bit-patterned media recording (BPMR) system, which can obtain a better bit error rate (BER) performance. We focus on the three-track/three-head BPMR channel and propose the ITI subtraction technique that performs together with a rate-5/6 two dimensional (2D) modulation code. Since the coded system can provide the estimated recorded bit sequence with a high reliability rate for the center track. However, the upper and lower data sequences still be interfered with their sidetracks, which results to have a low reliability rate. Therefore, we propose to feedback the data from the center and upper tracks for subtracting the ITI effect of the lower track. Meanwhile, the feedback data from the center and lower tracks will be also used to subtract the ITI effect of the upper track. The use of our proposed technique can effectively reduce the severity of ITI effect which caused from the two sidetracks. The computer simulation results in the presence of position and size fluctuations show that the proposed system yields better BER performance than a conventional coded system, especially when an areal density (AD) is ultra high.

  • A TMR Mitigation Method Based on Readback Signal in Bit-Patterned Media Recording

    Wiparat BUSYATRAS  Chanon WARISARN  Lin M. M. MYINT  Piya KOVINTAVEWAT  

     
    PAPER-Storage Technology

      Vol:
    E98-C No:8
      Page(s):
    892-898

    Track mis-registration (TMR) is one of the major problems in high-density magnetic recording systems such as bit-patterned media recording (BPMR). In general, TMR results from the misalignment between the center of the read head and that of the main track, which can deteriorate the system performance. Although TMR can be handled by a servo system, this paper proposes a novel method to alleviate the TMR effect, based on the readback signal. Specifically, the readback signal is directly used to estimate a TMR level and is then further processed by the suitable target and equalizer designed for such a TMR level. Simulation results indicate that the proposed method can sufficiently estimate the TMR level and then helps improve the system performance if compared to the conventional receiver that does not employ a TMR mitigation method, especially when an areal density is high and/or a TMR level is large.

  • Soft-Output Decoding Approach of 2D Modulation Codes in Bit-Patterned Media Recording Systems

    Chanon WARISARN  Piya KOVINTAVEWAT  

     
    PAPER-Storage Technology

      Vol:
    E98-C No:12
      Page(s):
    1187-1192

    The two-dimensional (2D) interference is one of the major impairments in bit-patterned media recording (BPMR) systems due to small bit and track pitches, especially at high recording densities. To alleviate this problem, we introduced a rate-4/5 constructive inter-track interference (CITI) coding scheme to prevent the destructive data patterns to be written onto a magnetic medium for an uncoded BPMR system, i.e., without error-correction codes. Because the CITI code produces only the hard decision, it cannot be employed in a coded BPMR system that uses a low-density parity-check (LDPC) code. To utilize it in an iterative decoding scheme, we propose a soft CITI coding scheme based on the log-likelihood ratio algebra implementation in Boolean logic mappings in order that the soft CITI coding scheme together with a modified 2D soft-output Viterbi algorithm (SOVA) detector and a LDPC decoder will jointly perform iterative decoding. Simulation results show that the proposed scheme provides a significant performance improvement, in particular when an areal density (AD) is high and/or the position jitter is large. Specifically, at a bit-error rate of 10-4 and no position jitter, the proposed system can provide approximately 1.8 and 3.5 dB gain over the conventional coded system without using the CITI code at the ADs of 2.5 and 3.0 Tera-bit per square inch (Tb/in2), respectively.

  • An ITI-Mitigating 5/6 Modulation Code for Bit-Patterned Media Recording

    Chanon WARISARN  Autthasith ARRAYANGKOOL  Piya KOVINTAVEWAT  

     
    PAPER-Storage Technology

      Vol:
    E98-C No:6
      Page(s):
    528-533

    In bit-patterned media recording (BPMR), the readback signal is severely corrupted by the inter-symbol interference (ISI) and inter-track interference (ITI), especially at high recording densities, due to small bit and track pitches. One way to alleviate the ITI effect is to encode an input data sequence before recording, so as to avoid some data patterns that easily cause an error at the data detection process. This paper proposes an ITI-mitigating 5/6 modulation code for a multi-track multi-head BPMR system to eliminate the data patterns that lead to severe ITI. Specifically, each of the 5 user bits is converted into a 6-bit codeword in the form of a 3-by-2 data array, based on a look-up table. Experimental results indicate that the system with the proposed coding scheme outperforms that without coding, especially when an areal density is high and/or the position jitter is large.

  • An Effective Track Width with a 2D Modulation Code in Two-Dimensional Magnetic Recording (TDMR) Systems Open Access

    Kotchakorn PITUSO  Chanon WARISARN  Damrongsak TONGSOMPORN  

     
    PAPER-Storage Technology

      Pubricized:
    2019/08/05
      Vol:
    E102-C No:11
      Page(s):
    839-844

    When the track density of two-dimensional magnetic recording (TDMR) systems is increased, intertrack interference (ITI) inevitably grows, resulting in the extreme degradation of an overall system performance. In this work, we present coding, writing, and reading techniques which allow TDMR systems with multi-readers to overcome severe ITI. A rate-5/6 two-dimensional (2D) modulation code is adopted to protect middle-track data from ITI based on cross-track data dependence. Since the rate-5/6 2D modulation code greatly improves the reliability of the middle-track, there is a bit-error rate gap between middle-track and sidetracks. Therefore, we propose the different track width writing technique to optimize the reliability of all three data tracks. In addition, we also evaluate the TDMR system performance using an user areal density capability (UADC) as a main key parameter. Here, an areal density capability (ADC) can be measured by finding the bit-error rate of the system with sweeping track and linear densities. The UADC is then obtained by removing redundancy from the ADC. Simulation results show that a system with our proposed techniques gains the UADC of about 4.66% over the conventional TDMR systems.

  • Iterative Timing Recovery with the Split-Preamble Strategy for Coded Partial Response Channels

    Chanon WARISARN  Piya KOVINTAVEWAT  Pornchai SUPNITHI  

     
    PAPER-Storage Technology

      Vol:
    E94-C No:3
      Page(s):
    368-374

    This paper proposes a modified per-survivor iterative timing recovery scheme, which exploits a new split-preamble strategy in conjunction with a per-survivor processing soft-output Viterbi algorithm (PSP-SOVA). The conventional split-preamble strategy places a preamble at the beginning of a data sector and uses it to run a phase-locked loop during acquisition to find an initial phase/frequency offset. However, the proposed scheme splits the preamble into two parts. The first part is placed at the beginning of the data sector, whereas the second part is divided into small clusters, each of which is then embedded uniformly within the data stream. This split preamble is utilized to adjust the branch metric calculation in PSP-SOVA to ensure that the survivor path occurs in a correct direction. Results indicate that the proposed scheme yields a better performance than a conventional receiver with separate timing recovery and turbo equalization, and the iterative timing recovery scheme proposed in [1],[2], especially when the timing jitter is large. In addition, we also show that the proposed scheme can automatically correct a cycle slip much more efficiently than the others.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.