1-2hit |
Takayuki NISHIO Kaito FUNABIKI Masahiro MORIKURA Koji YAMAMOTO Daisuke MURAYAMA Katsuya NAKAHIRA
Long-distance wireless local area networks (WLANs) are the key enablers of wide-area and low-cost access networks in rural areas. In a WLAN, the long propagation delay between an access point (AP) and stations (STAs) significantly degrades the throughput and creates a throughput imbalance because the delay causes unexpected frame collisions. This paper summarizes the problems caused in the medium access control (MAC) mechanism of the WLAN by a long propagation delay. We propose a MAC protocol for solving the delay-induced throughput degradation and the throughput imbalance between the uplink and the downlink in WLANs to address these problems. In the protocol, the AP extends NAV duration of CTS frame to protect an ACK frame and transmits its data frame to avoid delay induced frame collisions by piggybacking on the ACK frame transmission. We also provide a throughput model for the proposed protocol based on the Bianchi model. A numerical analysis using the proposed throughput model and simulation evaluation demonstrate that the proposed protocol increases the system throughput by 150% compared with that obtained using the conventional method, and the uplink throughput can be increased to the same level as the downlink throughput.
Katsuya NAKAHIRA Jun MASHINO Jun-ichi ABE Daisuke MURAYAMA Tadao NAKAGAWA Takatoshi SUGIYAMA
This paper proposes a dynamic spectrum controlled (DSTC) channel allocation algorithm to increase the total throughput of satellite communication (SATCOM) systems. To effectively use satellite resources such as the satellite's maximum transponder bandwidth and maximum transmission power and to handle the propagation gain variation at all earth stations, the DSTC algorithm uses two new transmission techniques: spectrum compression and spectrum division. The algorithm controls various transmission parameters, such as the spectrum compression ratio, number of spectrum divisions, combination of modulation method and FEC coding rate (MODCOD), transmission power, and spectrum bandwidth to ensure a constant transmission bit rate under variable propagation conditions. Simulation results show that the DSTC algorithm achieves up to 1.6 times higher throughput than a simple MODCOD-based algorithm.