Author Search Result

[Author] Takatoshi SUGIYAMA(28hit)

1-20hit(28hit)

  • Path Loss Model with Low Antenna Height for Microwave Bands in Residential Areas Open Access

    Motoharu SASAKI  Wataru YAMADA  Naoki KITA  Takatoshi SUGIYAMA  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:7
      Page(s):
    1930-1944

    A new path loss model of interference between mobile terminals in a residential area is proposed. The model uses invertible formulas and considers the effects on path loss characteristics produced by paths having many corners or corners with various angles. Angular profile and height pattern measurements clarify three paths that are dominant in terms of their effect on the accurate modeling of path loss characteristics in residential areas: paths along a road, paths between houses, and over-roof propagation paths. Measurements taken in a residential area to verify the model's validity show that the model is able to predict path loss with greater accuracy than conventional models.

  • OFDM/CDMA Technologies for Future Broadband Mobile Communication Systems

    Masahiro UMEHIRA  Takatoshi SUGIYAMA  

     
    INVITED PAPER

      Vol:
    E85-A No:12
      Page(s):
    2804-2812

    OFDM (Orthogonal Frequency Division Multiplexing) and CDMA (Code Division Multiple Access) are being used to enable broadband mobile wireless access under severe multipath fading in IMT-2000 and 5 GHz band WLAN (Wireless Local Area Networks), respectively. Both of them are expected to play important roles in future broadband mobile communication systems such as fourth generation cellular and next generation broadband WLAN. This paper overviews the features of OFDM and CDMA technologies and discusses their roles in future broadband mobile communication systems. It suggests an OFDM/CDMA approach combined with link adaptation and SDM (Space Division Multiplexing) over MIMO (Multiple Input Multiple Output) channel to achieve high transmission rate and to improve frequency utilization efficiency for high system capacity.

  • Plane-Wave and Vector-Rotation Approximation Technique for Reducing Computational Complexity to Simulate MIMO Propagation Channel Using Ray-Tracing Open Access

    Wataru YAMADA  Naoki KITA  Takatoshi SUGIYAMA  Toshio NOJIMA  

     
    PAPER-Antennas and Propagation

      Vol:
    E92-B No:12
      Page(s):
    3850-3860

    This paper proposes new techniques to simulate a MIMO propagation channel using the ray-tracing method for the purpose of decreasing the computational complexity. These techniques simulate a MIMO propagation channel by substituting the propagation path between a particular combination of transmitter and receiver antennas for all combinations of transmitter and receiver antennas. The estimation accuracy calculated using the proposed techniques is evaluated based on comparison to the results calculated using imaging algorithms. The results show that the proposed techniques simulate a MIMO propagation channel with low computational complexity, and a high level of estimation accuracy is achieved using the proposed Vector-Rotation Approximation technique compared to that for the imaging algorithm.

  • A Reduced-Complexity Signal Detection Scheme Employing ZF and K-Best Algorithms for OFDM/SDM

    Takafumi FUJITA  Atsushi OHTA  Takeshi ONIZAWA  Takatoshi SUGIYAMA  

     
    PAPER-Space Division Multiplexing

      Vol:
    E88-B No:1
      Page(s):
    66-75

    This paper proposes a reduced-complexity signal detection scheme for Orthogonal Frequency Division Multiplexing with Space Division Multiplexing (OFDM/SDM) systems that utilize Zero-Forcing (ZF) and K-best algorithms. It is known that Maximum Likelihood Detection (MLD) with exhaustive search achieves mathematically optimal performance for SDM signal detection. However, it also suffers from exponential computational complexity against the number of transmit antennas and modulation order. In order to reduce the computational complexity of MLD, we apply the K-best algorithm for signal detection. It is known that the K-best algorithm itself inherently reduces the computational complexity of MLD because it avoids exhaustive search. In this paper, we propose the modified K-best algorithm, which exploits the ZF algorithm for initial symbol estimation. This initial symbol estimation improves the decoding accuracy of the original K-best algorithm. We evaluate the performance of the proposed scheme through computer simulations. The computer simulation results show that the performance degradation from the MLD algorithm is suppressed to just 1 dB or so in terms of the required Eb/N0 for packet error rate (PER) = 10-2, When either 16 Quadrature Amplitude Modulation (16QAM) or 64QAM is applied with three transmit and three receive antennas. In these cases, 87% and 99% fewer metric computations are required than the MLD algorithm. It is confirmed that the proposed MLD algorithm offers a significant reduction in the computational complexity from the MLD algorithm while suppressing the performance degradation.

  • A SDM-COFDM Scheme Employing a Simple Feed-Forward Inter-Channel Interference Canceller for MIMO Based Broadband Wireless LANs

    Satoshi KUROSAKI  Yusuke ASAI  Takatoshi SUGIYAMA  Masahiro UMEHIRA  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    283-290

    This paper proposes a space division multiplexed - coded orthogonal frequency division multiplexing (SDM-COFDM) scheme for multi-input multi-output (MIMO) based broadband wireless LANs. The proposed scheme reduces inter-channel interference in SDM transmission with a simple feed-forward canceller which multiplies the received symbols by the estimated propagation inverse matrix for each OFDM subcarrier. This paper proposes a new preamble pattern in order to improve power efficiency in the estimation of the propagation matrix. Moreover, the proposed likelihood-weighting scheme, which is based on signal-to-noise power ratio (SNR) of each OFDM subcarrier, improves the error correction performance of soft decision Viterbi decoding. Computer simulation shows that the proposed SDM-COFDM scheme with two transmitting/receiving antennas doubles the transmission rate without increasing the channel bandwidth and achieves almost the same PER performance as the conventional single-channel transmission in frequency selective fading environments. In particular, it achieves more than 100 Mbit/s per 20 MHz by using 64QAM with the coding rate of 3/4.

  • Wireless Network Coding Diversity Technique Based on Hybrid AF/DF Relay Method Employing Adaptive Power Control at Relay Node for Bidirectional Two-Hop Wireless Networks

    Nobuaki OTSUKI  Takatoshi SUGIYAMA  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E95-B No:12
      Page(s):
    3772-3785

    In this paper, we propose a wireless network coding diversity technique based on hybrid amplify-and-forward/decode-and-forward relay method employing adaptive power control for two-hop wireless networks in order to improve relay node position flexibility. Wireless network coding diversity based on hybrid relay method selects either modulation symbol level wireless network coding diversity or bit sequence level wireless network coding diversity as its wireless network coding diversity scheme according to the cyclic redundancy check result at the relay node. Moreover, the adaptive power control scheme proposed here controls the relay node's transmit power according to its position. Computer simulations verify that wireless network coding diversity based on hybrid relay method employing the adaptive power control scheme can expand the area wherein the relay node can be located while satisfying the required communication quality by 4.56 times compared to the conventional wireless network coding diversity scheme. Therefore, we confirm that our proposed scheme can increase relay node position flexibility.

  • Undesired Radiation Suppression Technique for Distributed Array Antenna by Antenna Positioning and Delay Signal Processing

    Kouhei SUZUKI  Hideya SO  Daisuke GOTO  Yoshinori SUZUKI  Fumihiro YAMASHITA  Katsuya NAKAHIRA  Kiyoshi KOBAYASHI  Takatoshi SUGIYAMA  

     
    PAPER-Satellite Communications

      Pubricized:
    2017/03/01
      Vol:
    E100-B No:10
      Page(s):
    1959-1967

    This paper introduces distributed array antenna (DAA) systems that offer high antenna gain. A DAA consists of several small antennas with improved antenna gain. This paper proposes a technique that suppresses the off-axis undesired radiation and compensates the time delay by combining signal processing with optimization of array element positioning. It suppresses the undesired radiation by compensating the delay timing with high accuracy and deliberately generating the inter-symbol interference (ISI) in side-lobe directions. Computer simulations show its effective suppression of the equivalent isotropic radiated power (EIRP) pattern and its excellent BER performance.

  • Novel Polarization-Tracking-Free Mobile Satellite Communication Systems and On-Ground Polarization-Forming Technique

    Yoshinori SUZUKI  Takatoshi SUGIYAMA  Kiyoshi KOBAYASHI  

     
    PAPER

      Vol:
    E95-B No:11
      Page(s):
    3412-3419

    This paper proposes an On-Ground Polarization-Forming (GPF) technique to realize a novel polarization-tracking-free satellite communication system whose communication satellite uses linear polarizations. In this system, mobile terminals use circular polarization to realize polarization-tracking-free and simplified terminal configuration. To output circular polarization from the satellite's horizontal and vertical polarization antennas, those output signals transmitted from the satellite are controlled by the base station using the GPF technique. We fabricate a GPF transmitter to evaluate its polarization forming performance. Measured results show that the proposed technique achieves very high cross-polarization discrimination, more than 27 dB.

  • Path Loss Model for Low Antenna Heights in Residential Areas at Middle VHF Band

    Motoharu SASAKI  Wataru YAMADA  Naoki KITA  Takatoshi SUGIYAMA  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2093-2101

    A path loss model for low antenna heights below surrounding buildings in residential areas is presented to contribute to the construction of VHF band wireless systems. The model is constructed on the basis of measurement results at 167.65MHz, near center frequency at VHF band. Path loss characteristics in the middle VHF band are compared to those in bands above UHF. The dominant paths in bands above UHF include propagation paths below surrounding buildings, such as paths along roads. However, in the middle VHF band, these paths are instantly attenuated because their 1st Fresnel zone radius is larger than the average building height or road width. The dominant path in the middle VHF band is the over-roof propagation path, and the 1st Fresnel zone of the path is shielded by the buildings and the ground surface. The proposed path loss model has two features. First, it derives the effective height of the ground surface from the terrain profile of the buildings and the ground surface. Second, it uses formulas of a two-path model to take the shielding of the 1st Fresnel zone into account. Finally, it is shown that the proposed model is able to predict the path loss measurement results more accurately than the conventional model.

  • A Half-Chip Offset QPSK Modulation CDMA Scheme Employing Differential Detection for Advanced Wireless LAN Systems

    Takatoshi SUGIYAMA  Masato MIZOGUCHI  Shuji KUBOTA  

     
    PAPER-Radio Communication

      Vol:
    E79-B No:5
      Page(s):
    693-700

    This paper proposes a half-chip offset QPSK (Quadrature Phase Shift Keying) modulation CDMA (Code Division Multiple Access) scheme to allow the simple differential detection while realizing a compact spectrum in nonlinear channels for wireless LAN systems. The experimental results show the proposed scheme achieves excellent Pe (probability of error) performances in ACI (adjacent channel interference) and CCI (co-channel interference) environments. Moreover, by employing time diversity and high-coding-gain FEC (Forward Error Correction), the half-chip offset QPSK-CDMA scheme realizes an improvement of 3.0 dB (in terms of Eb/No at a Pe of 105) in Rician fading environments with a Doppler frequency fD of 10 Hz and a delay spread of 40 nsec.

  • A Frequency Utilization Ffficiency Improvement on Superposed SSMA-QPSK Signal Transmission over High Speed QPSK Signals in Nonlinear Channels

    Takatoshi SUGIYAMA  Hiroshi KAZAMA  Masahiro MORIKURA  Shuji KUBOTA  Shuzo KATO  

     
    PAPER

      Vol:
    E76-B No:5
      Page(s):
    480-487

    This paper proposes a superposed SSMA (Spread Spectrum Multiple Access)-QPSK (Quadrature Phase Shift Keying) signal transmission scheme over high speed QPSK signals to achieve higher frequency utilization efficiency and to facilitate lower power transmitters for SSMA-QPSK signal transmission. Experimental results show that the proposed scheme which employs the coding-rate of one-half FEC (Forward Error Correction) and a newly proposed co-channel interference cancellation scheme for SSMA-QPSK signals can transmit twenty SSMA-QPSK channels simultaneously over a nonlinearly amplified high speed QPSK signal transmission channel and achieve as ten times SSMA channels transmission as that without co-channel interference cancellation when the SSMA-QPSK signal power to the high speed QPSK signal power ratio equals -30dB. Moreover, cancellation feasibility generation of the interference signals replica through practical hardware implementation is clarified.

  • Virtual Continuous CWmin Control Scheme of WLAN

    Yuki SANGENYA  Fumihiro INOUE  Masahiro MORIKURA  Koji YAMAMOTO  Fusao NUNO  Takatoshi SUGIYAMA  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    40-48

    In this paper, a priority control problem between uplink and downlink flows in IEEE 802.11 wireless LANs is considered. The minimum contention window size (CWmin) has a nonnegative integer value. CWmin control scheme is one of the solutions for priority control to achieve the fairness between links. However, it has the problem that CWmin control scheme cannot achieve precise priority control when the CWmin values become small. As the solution of this problem, this paper proposes a new CWmin control method called a virtual continuous CWmin control (VCCC) scheme. The key concept of this method is that it involves the use of small and large CWmin values probabilistically. The proposed scheme realizes the expected value of CWmin as a nonnegative real number and solves the precise priority control problem. Moreover, we proposed a theoretical analysis model for the proposed VCCC scheme. Computer simulation results show that the proposed scheme improves the throughput performance and achieves fairness between the uplink and the downlink flows in an infrastructure mode of the IEEE 802.11 based wireless LAN. Throughput of the proposed scheme is 31% higher than that of a conventional scheme when the number of wireless stations is 18. The difference between the theoretical analysis results and computer simulation results of the throughput is within 1% when the number of STAs is less than 10.

  • A New AFC Circuit Employing Double-Product Type Frequency Discriminator in Very-Low CNR Environments

    Nobuaki MOCHIZUKI  Takatoshi SUGIYAMA  Masahiro UMEHIRA  

     
    PAPER-Modem and Coding

      Vol:
    E80-B No:1
      Page(s):
    25-32

    This paper proposes a new AFC (automatic frequency control) circuit employing a double-product type frequency discriminator to enable fast acquisition in very-low CNR (carrier to noise power ratio) environments. The frequency step responses of the proposed AFC circuit are theoretically analyzed. In addition this paper evaluates the performance of the proposed AFC circuit by computer simulation in very-low CNR environments. The simulation results confirm that click noise at the frequency discriminator causes large frequency tracking error and that this error can be improved by increasing the delay time of the double-product type frequency discriminator. The frequency error can be also reduced by introducing the proposed frequency discriminator to modify the frequency error detection performance. The acquisition time of the proposed AFC circuit can be reduced by about 100 symbols compared to the conventional cross-product type AFC circuit.

  • Novel Channel Allocation Algorithm Using Spectrum Control Technique for Effective Usage of both Satellite Transponder Bandwidth and Satellite Transmission Power

    Katsuya NAKAHIRA  Jun-ichi ABE  Jun MASHINO  Takatoshi SUGIYAMA  

     
    PAPER

      Vol:
    E95-B No:11
      Page(s):
    3393-3403

    This paper proposes a new channel allocation algorithm for satellite communication systems. The algorithm is based on a spectrum division transmission technique as well as a spectrum compression transmission technique that we have developed in separate pieces of work. Using these techniques, the algorithm optimizes the spectrum bandwidth and a MODCOD (modulation and FEC error coding rate) scheme to balance the usable amount of satellite transponder bandwidth and satellite transmission power. Moreover, it determines the center frequency and bandwidth of each divided subspectra depending on the unused bandwidth of the satellite transponder bandwidth. As a result, the proposed algorithm enables flexible and effective usage of satellite resources (bandwidth and power) in channel allocations and thus enhances satellite communication (SATCOM) system capacity.

  • A Highly Efficient DAMA Algorithm for Making Maximum Use of both Satellite Transponder Bandwidth and Transmission Power

    Katsuya NAKAHIRA  Takatoshi SUGIYAMA  Hiroki NISHIYAMA  Nei KATO  

     
    PAPER-Satellite Communications

      Vol:
    E95-B No:8
      Page(s):
    2619-2630

    This paper proposes a novel satellite channel allocation algorithm for a demand assigned multiple access (DAMA) controller. In satellite communication systems, the channels' total bandwidth and total power are limited by the satellite's transponder bandwidth and transmission power (satellite resources). Our algorithm is based on multi-carrier transmission and adaptive modulation methods. It optimizes channel elements such as the number of sub-carriers, modulation level, and forward error correction (FEC) coding rate. As a result, the satellite's transponder bandwidth and transmission power can be simultaneously used to the maximum and the overall system capacity, i.e., total transmission bit rate, will increase. Simulation results show that our algorithm increases the overall system capacity by 1.3 times compared with the conventional fixed modulation algorithm.

  • System Throughput Gain by New Channel Allocation Scheme for Spectrum Suppressed Transmission in Multi-Channel Environments over a Satellite Transponder

    Sumika OMATA  Motoi SHIRAI  Takatoshi SUGIYAMA  

     
    PAPER

      Pubricized:
    2020/03/27
      Vol:
    E103-B No:10
      Page(s):
    1059-1068

    A spectrum suppressed transmission that increases the frequency utilization efficiency, defined as throughput/bandwidth, by suppressing the required bandwidth has been proposed. This is one of the most effective schemes to solve the exhaustion problem of frequency bandwidths. However, in spectrum suppressed transmission, its transmission quality potentially degrades due to the ISI making the bandwidth narrower than the Nyquist bandwidth. In this paper, in order to improve the transmission quality degradation, we propose the spectrum suppressed transmission applying both FEC (forward error correction) and LE (linear equalization). Moreover, we also propose a new channel allocation scheme for the spectrum suppressed transmission, in multi-channel environments over a satellite transponder. From our computer simulation results, we clarify that the proposed schemes are more effective at increasing the system throughput than the scheme without spectrum suppression.

  • Enhancement of CSMA/CA and Network Coding in Single-Relay Multi-User Wireless Networks

    Chun-Hsiang HUANG  Daisuke UMEHARA  Satoshi DENNO  Masahiro MORIKURA  Takatoshi SUGIYAMA  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3371-3380

    Network coding is a promising technique for improving system performance in wireless multihop networks. In this paper, the throughput and fairness in single-relay multi-user wireless networks are evaluated. The carrier sense multiple access with collision avoidance (CSMA/CA) protocol and network coding are used in the medium access control (MAC) sublayer in such networks. The fairness of wireless medium access among stations (STAs), the access point (AP), and the relay station (RS) results in asymmetric bidirectional flows via the RS; as a result the wireless throughput decreases substantially. To overcome this problem, an autonomous optimization of minimum contention window size is developed for CSMA/CA and network coding to assign appropriate transmission opportunities to both the AP and RS. By optimizing the minimum contention window size according to the number of STAs, the wireless throughput in single-relay multi-user networks can be improved and the fairness between bidirectional flows via the RS can be achieved. Numerical analysis and computer simulations enable us to evaluate the performances of CSMA/CA and network coding in single-relay multi-user wireless networks.

  • An Integrated Interference Suppression Scheme with An Adaptive Equalizer for Digital Satellite Communication Systems

    Takatoshi SUGIYAMA  Masanobu SUZUKI  Shuji KUBOTA  

     
    PAPER-Satellite Communication

      Vol:
    E79-B No:2
      Page(s):
    191-197

    This paper proposes an integrated interference suppression scheme which realizes interference-resistant satellite digital signal transmission systems. It employs a notch filter in the receiving side to suppress the co-channel interference (CCI) signal. Moreover, the proposed scheme employs an adaptive equalizer combined with a forward error correction (FEC) scheme to improve the Pe (probability of error) performance degradation due to the inter-symbol interference caused by notch filtering of the desired signal. In the typical frequency modulation (FM) CCI environment with a BWi/FN of 2.3 (BWi: interference signal required bandwidth, fN: one half the Nyquist bandwidth of the desired signal), a Δf / fN of 1.05 (Δf: interference frequency offset) and a D/U of 3 dB (desired to undesired (interference) signal power ratio), the proposed scheme improves the required Eb/NO by 1.5 dB at a Pe of 10-4 compared to that without an adaptive equalizer.

  • An FFT Interference Detection Scheme for Interference Suppression in Digital Satellite Communication Systems

    Takatoshi SUGIYAMA  Masanobu SUZUKI  Shuji KUBOTA  

     
    PAPER-Satellite Communication

      Vol:
    E80-B No:9
      Page(s):
    1352-1362

    This paper proposes an FFT (Fast Fourier Transform) interference detection for interference suppression which combines notch filtering and FEC (forward error correction) to improve the Pe (probability of error) performance degradation due to co-channel interference in digital satellite communication systems. The proposed FFT interference detection scheme can determine the co-channel interference carrier frequency, power, and bandwidth precisely by using the power detection threshold suitable for the desired signal power spectrum, and the notch filter characteristic can be set according to the results. The interference suppression with the proposed scheme achieves the degradation in required Eb/No to only 1.0 dB at a Pe of 10-4 compared to that with the optimum notch filter (ideal detection) in unknown CW (continuous wave) and FM (frequency modulation) co-channel interference environments. Moreover, the proposed scheme improves the required Eb/No by 6.5 dB compared to that without a notch filter in an FM interference environment with interference carrier frequency offset normalized by the desired signal clock rate of 0.52, desired to undesired (interference) signal power ratio of 3 dB and interference bandwidth at 10 dB down power point from the peak normalized by the desired signal clock rate of 0.25.

  • Multiband Sector Antenna with the Same Beamwidth Employing Multiple Woodpile Metamaterial Reflectors Open Access

    Hideya SO  Atsuya ANDO  Tomohiro SEKI  Munenari KAWASHIMA  Takatoshi SUGIYAMA  

     
    PAPER

      Vol:
    E97-C No:10
      Page(s):
    976-985

    This paper proposes a sector base station antenna for mobile wireless communication systems employing multiple woodpile metamaterial reflectors and a multiband radiator that establishes the same beamwidth in the horizontal plane for more than two frequency bands. Electromagnetic Band Gap (EBG) characteristics of each metamaterial reflector can be controlled through structural parameters of the woodpile reflector, e.g., the rod width and rod spacing. As an example of the proposed antenna, a design for a triple-frequency-band antenna that radiates at 800 MHz, 2,GHz, and 4,GHz is shown. The algorithm used to adjust the beamwidth of the proposed antenna is newly introduced and adjusts the beamwidth to be the same for each band using the rod width of the woodpile. A prototype of the proposed antenna has the approximately 90$^{circ}$ beamwidth in the horizontal plane at the three frequencies, and the measurement results agree well with the electromagnetic field simulation results.

1-20hit(28hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.