1-4hit |
Seongjae CHO Il Han PARK Jung Hoon LEE Jang-Gn YUN Doo-Hyun KIM Jong Duk LEE Hyungcheol SHIN Byung-Gook PARK
Efforts have been devoted to maximizing memory array densities. However, as the devices are scaled down in dimension and getting closer to each other, electrical interference phenomena among devices become more prominent. Various features of 3-D memory devices are proposed for the enhancement of memory array density. In this study, we mention 3-D NAND flash memory device having pillar structure as the representative, and investigate the paired cell interference (PCI) which inevitably occurs in the read operation for 3-D memory devices in this feature. Furthermore, criteria for setting up the read operation bias schemes are also examined in existence with PCI.
Doo-Hyun KIM Il Han PARK Seongjae CHO Jong Duk LEE Hyungcheol SHIN Byung-Gook PARK
This paper presents a detailed study of the retention characteristics in scaled multi-bit SONOS flash memories. By calculating the oxide field and tunneling currents, we evaluate the charge trapping mechanism. We calculate transient retention dynamics with the ONO fields, trapped charge, and tunneling currents. All the parameters were obtained by physics-based equations and without any fitting parameters or optimization steps. The results can be used with nanoscale nonvolatile memory. This modeling accounts for the VT shift as a function of trapped charge density, time, silicon fin thickness and type of trapped charge, and can be used for optimizing the ONO geometry and parameters for maximum performance.
Jang Gn YUN Il Han PARK Seongjae CHO Jung Hoon LEE Doo-Hyun KIM Gil Sung LEE Yoon KIM Jong Duk LEE Byung-Gook PARK
In this paper, characteristics of the 2-bit recessed channel memory with lifted-charge trapping nodes are investigated. The length between the charge trapping nodes through channel, which is defined as the effective memory node length (Meff), is extended by lifting up them. The dependence of VTH window and short channel effect (SCE) on the recessed depth is analyzed. Improvement of short channel effect is achieved because the recessed channel structure increases the effective channel length (Leff). Moreover, this device shows highly scalable memory characteristics without suffering from the bottom-side effect (BSE).
Gil Sung LEE Doo-Hyun KIM Seongjae CHO Byung-Gook PARK
We propose a new cone-type DRAM cell as a 1T DRAM cell. The superiority of cone shape is already reported, in that the electric field concentration effect encourages impact ionization phenomenon. So the device has improved DRAM characteristics compared with cylinder type 1T DRAM Cell (SGVC Cell). To confirm the memory operation of the cone-type DRAM cell, simulation works were carried out. Also, retention characteristic shows the device can be used practically.