1-2hit |
Masao WASHIZU Seiichi SUZUKI Osamu KUROSAWA Hideaki KURAHASHI Akira KATOH
A black membrane is a biological-membrane analogue, i.e. a phospholipid bilayer membrane, artificially formed on an orifice immersed in water. It is used to investigate the properties of the membrane itself and channels embedded therein. In this paper, microfabrication techniques are applied to fabricate the orifice, and a glass substrate is isotropically etched to define the orifice geometry. The periphery of the orifice was patterned with aminosilane to anchor the membrane. The remainder part was coated with fluorosilane to make the surface hydrophobic and to prevent adsorption of channel-forming molecules. We demonstrated experimentally that a stable and reproducible membrane is easily obtainable using the orifice.
Shin-ichi O'UCHI Meishoku MASAHARA Kazuhiko ENDO Yongxun LIU Takashi MATSUKAWA Kunihiro SAKAMOTO Toshihiro SEKIGAWA Hanpei KOIKE Eiichi SUZUKI
Aiming at drastically reducing standby leakage current, an SRAM using Four-Terminal- (4T-) FinFETs, named Flex-Vth SRAM, with a dynamic row-by-row threshold voltage control (RRTC) was developed. The Flex-Vth SRAM realizes an extremely low standby-leakage current thanks to the flexible threshold-voltage (Vth) controllability of the 4T-FinFETs, while its access speed and static noise margin (SNM) are maintained. A TCAD-based Monte Carlo simulation indicates that even when the process-induced random variation in the device performance is taken into account, the Flex-Vth SRAM reduces the leakage current to 1/100 of that of a standard SRAM in a 256256 array, where 20-nm-gate-length technologies with the same on-current are assumed.