Ruiliang GUAN Hongwu LIU Nairui YIN Yanfeng HE Degui CHEN
With measuring the arc current, arc voltage and arc images, the high-current air arc commutation process across the separated electrodes was investigated. It shows that the existence of a short stable arc in the gap may increase the current commutation time. According to the energy balance of the arc column, the conditions to maintain the short stable arc were introduced and the effects of the current limiting resistance on the current commutation process were discussed.
Bin YAO Lifeng HE Shiying KANG Xiao ZHAO Yuyan CHAO
The Euler number is an important topological property in a binary image, and it can be computed by counting certain bit-quads in the binary image. This paper proposes a further improved bit-quad-based algorithm for computing the Euler number. By scanning image rows two by two and utilizing the information obtained while processing the previous pixels, the number of pixels to be checked for processing a bit-quad can be decreased from 2 to 1.5. Experimental results demonstrated that our proposed algorithm significantly outperforms conventional Euler number computing algorithms.
Lifeng HE Fang YANG Zhaocheng WANG
In this letter, a novel physical layer signaling transmission scheme is proposed, where the signaling information is conveyed by a pair of training sequences located in the odd and even subcarriers of an orthogonal frequency division multiplexing (OFDM) training symbol. At the receiver side, only a single correlator is required to detect the signaling information. Computer simulations verify the proposed signaling could outperform the S1 signaling and achieve similar robustness as the S2 signaling of the DVB-T2 standard.
Bin YAO Hua WU Yun YANG Yuyan CHAO Atsushi OHTA Haruki KAWANAKA Lifeng HE
The Euler number of a binary image is an important topological property for pattern recognition, and can be calculated by counting certain bit-quads in the image. This paper proposes an efficient strategy for improving the bit-quad-based Euler number computing algorithm. By use of the information obtained when processing the previous bit quad, the number of times that pixels must be checked in processing a bit quad decreases from 4 to 2. Experiments demonstrate that an algorithm with our strategy significantly outperforms conventional Euler number computing algorithms.
Lifeng HE Yuyan CHAO Kenji SUZUKI
This paper proposes a new first-scan method for two-scan labeling algorithms. In the first scan, our proposed method first scans every fourth image line, and processes the scan line and its two neighbor lines. Then, it processes the remaining lines from top to bottom one by one. Our method decreases the average number of times that must be checked to process a foreground pixel will; thus, the efficiency of labeling can be improved.
WenPing MA YeFeng HE Shaohui SUN
A new construction method for polyphase sequences with two-valued periodic auto- and crosscorrelation functions is proposed. This method gives L families of polyphase sequences for each prime length L which is bigger than three. For each family of sequences, the out-of-phase auto- and crosscorrelation functions are proved to be constant and asymptotically reach the Sarwate bound. Furthermore, it is shown that sequences of each family are mutually orthogonal.
Liang CHEN Le JIN Feng HE Hanwen CHENG Lenan WU
In next generation mobile multimedia communications, different wireless access networks are expected to cooperate. However, it is a challenging task to choose an optimal transmission path in this scenario. This paper focuses on the problem of selecting the optimal access network for multicast services in the cooperative mobile and broadcasting networks. An algorithm is proposed, which considers multiple decision factors and multiple optimization objectives. An analytic hierarchy process (AHP) method is applied to schedule the service queue and an artificial neural network (ANN) is used to improve the flexibility of the algorithm. Simulation results show that by applying the AHP method, a group of weight ratios can be obtained to improve the performance of multiple objectives. And ANN method is effective to adaptively adjust weight ratios when users' new waiting threshold is generated.
A class of balanced semi-bent functions with an even number of variables is proposed. It is shown that they include one subclass of semi-bent functions with maximum algebraic degrees. Furthermore, an example of semi-bent functions in a small field is given by using the zeros of some Kloosterman sums. Based on the result given by S.Kim et al., an example of infinite families of semi-bent functions is also obtained.
Lifeng HE Fang YANG Kewu PENG Jian SONG
In this paper, a novel pseudo-random noise complementary pair (PNCP) is proposed and adopted as the guard intervals in the time-domain synchronous OFDM (TDS-OFDM) system. The proposed PNCP has nearly ideal aperiodic auto-correlation property and inherits the differential property of the PN sequence. Simulations demonstrate the proposed TDS-OFDM system padded with PNCP could achieve better performance in both synchronization and channel estimation than the conventional TDS-OFDM system.
Lisong WANG Lifeng HE Tsuyoshi NAKAMURA Atsuko MUTOH Hidenori ITOH
This paper considers the problem of generating various calligraphy from some sample fonts. Our method is based on the deformable contour model g-snake. By representing the outline of each stroke of a character with a g-snake, we cast the generation problem into global and local deformation of g-snake under different control parameters, where the local deformation obeys the energy minimization principle of regularization technique. The base values of the control parameters are learned from given sample fonts. The experimental results on alphabet and Japanese characters Hiragana show such processing as a reasonable method for generating calligraphy.
Yongxin ZHAO Yanhong HUANG Qin LI Huibiao ZHU Jifeng HE Jianwen LI Xi WU
Survivability is an essential requirement of the networked information systems analogous to the dependability. The definition of survivability proposed by Knight in [16] provides a rigorous way to define the concept. However, the Knight's specification does not provide a behavior model of the system as well as a verification framework for determining the survivability of a system satisfying a given specification. This paper proposes a complete formal framework for specifying and verifying the concept of system survivability on the basis of Knight's research. A computable probabilistic model is proposed to specify the functions and services of a networked information system. A quantified survivability specification is proposed to indicate the requirement of the survivability. A probabilistic refinement relation is defined to determine the survivability of the system. The framework is then demonstrated with three case studies: the restaurant system (RES), the Warship Command and Control system (LWC) and the Command-and-Control (C2) system.
Xiao ZHAO Lifeng HE Bin YAO Yuyan CHAO
This paper presents a new connected component labeling algorithm. The proposed algorithm scans image lines every three lines and processes pixels three by three. When processing the current three pixels, we also utilize the information obtained before to reduce the repeated work for checking pixels in the mask. Experimental results demonstrated that our method is more efficient than the fastest conventional labeling algorithm.
Bin YAO Lifeng HE Shiying KANG Xiao ZHAO Yuyan CHAO
The Euler number of a binary image is an important topological property for pattern recognition, image analysis, and computer vision. A famous method for computing the Euler number of a binary image is by counting certain patterns of bit-quads in the image, which has been improved by scanning three rows once to process two bit-quads simultaneously. This paper studies the bit-quad-based Euler number computing problem. We show that for a bit-quad-based Euler number computing algorithm, with the increase of the number of bit-quads being processed simultaneously, on the one hand, the average number of pixels to be checked for processing a bit-quad will decrease in theory, and on the other hand, the length of the codes for implementing the algorithm will increase, which will make the algorithm less efficient in practice. Experimental results on various types of images demonstrated that scanning five rows once and processing four bit-quads simultaneously is the optimal tradeoff, and that the optimal bit-quad-based Euler number computing algorithm is more efficient than other Euler number computing algorithms.
Lifeng HE Yuyan CHAO Tsuyoshi NAKAMURA Hirohisa SEKI Hidenori ITOH
We propose a query processing method for amalgamated knowledge bases. Our query processing method is an extension of the magic sets technique for query processing in amalgamated knowledge bases, augmented with the capabilities of handling amalgamated atoms. Through rewriting rules in a given amalgamated knowledge base, our method offers the advantages associated with top-down as well as bottom-up evaluation. We discuss how to handle amalgamated atoms, consider how to check whether an amalgamated atom is satisfiable in a fact set and how to extend a fact set by inserting an amalgamated atom. We also give the transformation procedures for amalgamated knowledge databases and show the correctness of our method.
Lianshan SUN Jingxue WEI Hanchao DU Yongbin ZHANG Lifeng HE
This paper presents an improved YOLOv3 network, named MSFF-YOLOv3, for precisely detecting variable surface defects of aluminum profiles in practice. First, we introduce a larger prediction scale to provide detailed information for small defect detection; second, we design an efficient attention-guided block to extract more features of defects with less overhead; third, we design a bottom-up pyramid and integrate it with the existing feature pyramid network to construct a twin-tower structure to improve the circulation and fusion of features of different layers. In addition, we employ the K-median algorithm for anchor clustering to speed up the network reasoning. Experimental results showed that the mean average precision of the proposed network MSFF-YOLOv3 is higher than all conventional networks for surface defect detection of aluminum profiles. Moreover, the number of frames processed per second for our proposed MSFF-YOLOv3 could meet real-time requirements.
The main contribution of this paper is to characterize the hyperbentness of two infinite classes of Boolean functions via Dillon-like exponents, and give new classes of semibent functions with Dillon-like exponents and Niho exponents. In this paper, the approaches of Mesnager and Wang et al. are generalized to Charpin-Gong like functions with two additional trace terms. By using the partial exponential sums and Dickson polynomials, it also gives the necessary and sufficient conditions of the hyperbent properties for their subclasses of Boolean functions, and gives two corresponding examples on F230. Thanks to the result of Carlet et al., new classes of semibent functions are obtained by using new hyperbent functions and the known Niho bent functions. Finally, this paper extends the Works of Lisonek and Flori and Mesnager, and gives different characterizations of new hyperbent functions and new semibent functions with some restrictions in terms of the number of points on hyperelliptic curves. These results provide more nonlinear functions for designing the filter generators of stream ciphers.
Jingxia CHEN Zijing MAO Ru ZHENG Yufei HUANG Lifeng HE
Most recent work used raw electroencephalograph (EEG) data to train deep learning (DL) models, with the assumption that DL models can learn discriminative features by itself. It is not yet clear what kind of RSVP specific features can be selected and combined with EEG raw data to improve the RSVP classification performance of DL models. In this paper, we tried to extract RSVP specific features and combined them with EEG raw data to capture more spatial and temporal correlations of target or non-target event and improve the EEG-based RSVP target detection performance. We tested on X2 Expertise RSVP dataset to show the experiment results. We conducted detailed performance evaluations among different features and feature combinations with traditional classification models and different CNN models for within-subject and cross-subject test. Compared with state-of-the-art traditional Bagging Tree (BT) and Bayesian Linear Discriminant Analysis (BLDA) classifiers, our proposed combined features with CNN models achieved 1.1% better performance in within-subject test and 2% better performance in cross-subject test. This shed light on the ability for the combined features to be an efficient tool in RSVP target detection with deep learning models and thus improved the performance of RSVP target detection.
Xiao ZHAO Sihui LI Yun YANG Yuyan CHAO Lifeng HE
This paper proposes a new algorithm for substring searching. Our algorithm is an improvement on the famous BM algorithm. When a mismatch happens while searching a substring (pattern), the BM algorithm will use two strategies to calculate shifting distances of the substring respectively and selects the larger one. In comparison, our algorithm uses each of the two strategies for their most suitable cases separately without a selection operation. Experimental results demonstrated that our algorithm is more efficient than the BM algorithm and the Quick Search algorithm, especially for binary strings and DNA strings.
Lifeng HE Xiao ZHAO Bin YAO Yun YANG Yuyan CHAO
This paper proposes an efficient two-scan labeling algorithm for binary hexagonal images. Unlike conventional labeling algorithms, which process pixels one by one in the first scan, our algorithm processes pixels two by two. We show that using our algorithm, we can check a smaller number of pixels. Experimental results demonstrated that our method is more efficient than the algorithm extended straightly from the corresponding labeling algorithm for rectangle binary images.
Zhiting YAN Guanghui HE Weifeng HE Zhigang MAO
Co-channel interference (CCI) is becoming a challenging factor that causes performance degradation in modern communication systems. The receiver equipped with multiple antennas can suppress such interference by exploiting spatial correlation. However, it is difficult to estimate the spatial covariance matrix (SCM) of CCI accurately with limited number of known symbols. To address this problem, this paper first proposes an improved SCM estimation method by shrinking the variance of eigenvalues. In addition, based on breadth-first tree search schemes and improved channel updating, a low complexity iterative detector is presented with channel preprocessing, which not only considers the existence of CCI but also reduces the computational complexity in terms of visited nodes in a search tree. Furthermore, by scaling the extrinsic soft information which is fed back to the input of detector, the detection performance loss due to max-log approximation is compensated. Simulation results show that the proposed iterative receiver provides improved signal to interference ratio (SIR) gain with low complexity, which demonstrate the proposed scheme is attractive in practical implementation.