1-2hit |
Yitao CHI Zhang XIONG Qing CHANG Chao LI Hao SHENG
An advanced interest point detector is proposed to improve the Hessian-Matrix based detector of the SURF algorithm. Round-like shapes are utilized as the filter shape to calculate of the Hessian determinant. Dxy can be acquired from approximate round areas, while the regions for computing Dyy or Dxx are designed with the consideration to symmetry and a balance of pixel number. Experimental results indicate that the proposed method has higher repeatability than the one used in SURF, especially in the aspects of rotation and viewpoint, due to the centrosymmetry of the proposed filter shapes. The results of image matching also show that more precision can be gained with the application of proposed detector.
Zihao SONG Peng SONG Chao SHENG Wenming ZHENG Wenjing ZHANG Shaokai LI
Unsupervised Feature selection is an important dimensionality reduction technique to cope with high-dimensional data. It does not require prior label information, and has recently attracted much attention. However, it cannot fully utilize the discriminative information of samples, which may affect the feature selection performance. To tackle this problem, in this letter, we propose a novel discriminative virtual label regression method (DVLR) for unsupervised feature selection. In DVLR, we develop a virtual label regression function to guide the subspace learning based feature selection, which can select more discriminative features. Moreover, a linear discriminant analysis (LDA) term is used to make the model be more discriminative. To further make the model be more robust and select more representative features, we impose the ℓ2,1-norm on the regression and feature selection terms. Finally, extensive experiments are carried out on several public datasets, and the results demonstrate that our proposed DVLR achieves better performance than several state-of-the-art unsupervised feature selection methods.