1-2hit |
Zheng TANG Koichi TASHIMA Hirofumi HEBISHIMA Okihiko ISHIZUKA Koichi TANNO
A direct gradient descent learning algorithm of energy function in Hopfield neural networks is proposed. The gradient descent learning is not performed on usual error functions, but the Hopfield energy functions directly. We demonstrate the algorithm by testing it on an analog-to-digital conversion and an associative memory problems.
Zheng TANG Hirofumi HEBISHIMA Okihiko ISHIZUKA Koichi TANNO
This paper describes an MOS charge-mode version of a T-Model neural-based PCM encoder. The neural-based PCM encoding networks are designed, simulated and implemented using MOS charge-mode circuits. Simulation results are given for both the T-Model and the Hopfield model CMOS charge-mode PCM encoders, and demonstrate the T-Model neural-based one performs the PCM encoding perfectly, while the Hopfield one fails to.