Shoichiro YAMASAKI Tomoko K. MATSUSHIMA Shinichiro MIYAZAKI Kotoku OMURA Hirokazu TANAKA
Secret sharing is a method to protect information for security. The information is divided into n shares, and the information is reconstructed from any k shares but no knowledge of it is revealed from k-1 shares. Physical layer security is a method to yield a favorable receive condition to an authorized destination terminal in wireless communications based on multi-antenna transmission. In this study, we propose wireless packet communications protected by the secret sharing based on Reed Solomon coding and the physical layer security based on vector coding, which implements a single-antenna system and a multi-antenna system. Evaluation results show the validity of the proposed scheme.
Hirokazu TANAKA Shoichiro YAMASAKI
GSRI Pragmatic TCM, which is a Pragmatic Trellis Coded Modulation allowing bandwidth expansion, has been proposed. In [1], it is shown that this scheme can achieve higher performance than conventional Pragmatic TCM scheme. On the other hand, a real-time video multimedia communication is one of the possible applications for the third generation mobile communication systems. This video multimedia communication system needs a multiplexer which mixes various types of media such as video, voice and data into a single bitstream. ITU-T has standardized H.223 Annex A, B, C and D multimedia multiplexing protocols for low bit-rate mobile communications. This paper evaluates the performance of the GSRI Pragmatic TCM with an application of a mobile multimedia system using H.223 Annex D multiplexing scheme and MPEG-4 video coding.
Hirokazu TANAKA Katsumi SAKAKIBARA
A Reed-Solomon coded Type-I Hybrid ARQ scheme based on a Selective-Repeat (SR) ARQ with multicopy retransmission is proposed for mobile/personal satellite communication systems of a transmitter and a receiver both with the finite buffer. The performance of the proposed scheme on fading channels is analyzed. The basic idea of the strategy is the use of two modes; the SR mode and the multicopy mode. In the latter mode, erroneous blocks stored in the transmitter buffer are alternatively retransmitted multiple times when ν consecutive retransmissions in the SR mode are received in error. Numerical and simulation results for ν1 show that the proposed scheme presents better performance than the conventional SR+ST scheme 2 of the 2N block buffer by Miller and Lin.
Shoichiro YAMASAKI Hirokazu TANAKA
A multicarrier modulation called orthogonal frequency division multiplex (OFDM) is attracting attention as a transmission scheme which is robust against multipath propagation. A major disadvantage of OFDM is that it is sensitive to nonlinear distortion due to its wide transmission amplitude range. The scope of this study is to cope with the nonlinear problem. We propose a nonlinear distortion compensation scheme using an iterative method which has been applied to an image signal restoration.
Hirokazu TANAKA Shoichiro YAMASAKI Miki HASEYAMA
A Generalized Symbol-rate-increased (GSRI) Pragmatic Adaptive Trellis Coded Modulation (ATCM) is applied to a Multi-carrier CDMA (MC-CDMA) system with bi-orthogonal keying is analyzed. The MC-CDMA considered in this paper is that the input sequence of a bi-orthogonal modulator has code selection bit sequence and sign bit sequence. In, an efficient error correction code using Reed-Solomon (RS) code for the code selection bit sequence has been proposed. However, since BPSK is employed for the sign bit modulation, no error correction code is applied to it. In order to realize a high speed wireless system, a multi-level modulation scheme (e.g. MPSK, MQAM, etc.) is desired. In this paper, we investigate the performance of the MC-CDMA with bi-orthogonal keying employing GSRI ATCM. GSRI TC-MPSK can arbitrarily set the bandwidth expansion ratio keeping higher coding gain than the conventional pragmatic TCM scheme. By changing the modulation scheme and the bandwidth expansion ratio (coding rate), this scheme can optimize the performance according to the channel conditions. The performance evaluations by simulations on an AWGN channel and multi-path fading channels are presented. It is shown that the proposed scheme has remarkable throughput performance than that of the conventional scheme.
Takashi SUDO Hirokazu TANAKA Chika SUGIMOTO Ryuji KOHNO
Hands-free communications between cellular phones must be robust enough to withstand echo-path variation, and highly nonlinear echoes must be suppressed at low cost, when acoustic echo cancellation or suppression is applied to them. This paper proposes a spectrum-selective nonlinear echo suppression (SS-ES) approach as a solution to these issues. SS-ES is characterized by the selection of either a spectrum of the residual signal from an adaptive filter or a spectrum of the sending input signal depending on the amount of linear echo cancellation in an adaptive filter. Compared to conventional methods, the objective evaluation results of the SS-ES approach show an improvement of approximately 0.8-2.2dB, 0.23-2.39dB, and 0.26-0.50 in average echo return loss enhancement (ERLE), average root-mean-square log-spectral distortion (RMS-LSD), and the perceptual evaluation of speech quality (PESQ) value, respectively, under echo-path variation and double-talk conditions.
Hirokazu TANAKA Shoichiro YAMASAKI
A Pragmatic Trellis Coded MPSK on a Rayleigh fading channel is analyzed. This scheme allows bandwidth expansion ratio to be varied aiming at an optimization between complexity of the system design and improvement of coding gain. In order to vary the bandwidth expansion ratio, a punctured convolutional code is used. The performance of the proposed TC-2mPSK on a Rayleigh fading channel is theoretically analyzed. In the test examples, the BER performances of TC-QPSK and TC-8PSK are evaluated by theoretical analyses and computer simulations at the encoder parameters of K3 and r3/4. The results show that the proposed scheme can attain better performance not only over the uncoded scheme but over the conventional Pragmatic TCM.
For mobile/personal satellite systems, an ARQ protocol with low transmitter/receiver complexity as well as high throughput performance in a long Round-Trip-Delay (RTD) and even in a bad channel condition is required. In this paper, a new Selective-Repeat (SR) ARQ with multicopy retransmission is proposed and a performance on an AWGN channel is analyzed. The proposed scheme can be viewed as a modified version for SR + Stutter (ST) Scheme 2 [6]. The basic idea of the strategy is to repeat only erroneous blocks stored in the vN block transmitter buffer multiple times, when v consecutive retransmissions in SR mode are received in error, where N denotes RTD in blocks. Numerical analysis and simuration results in the case of N block transmitter/receiver buffer show that the proposed scheme presents better performance than SR + ST scheme 2 of 2N block buffer, especially that the robustness in the high BER region is remarkable.
Hirokazu TANAKA Tomoto K. MATSUSHIMA
In this paper, trellis coded modulation with bandwidth expansion is examined. The proposed scheme is a modified Symbol-rate-increased TCM [3]-[5], which allows the bandwidth expansion ratio to be varied to an arbitrary value. The Symbol-rate-increased TCM has been shown to be a particular case of the proposed scheme. Simulation results have clarified that the proposed scheme achieves a significant improvement over an uncoded scheme in an AWGN channel.
Tomoko K. MATSUSHIMA Shoichiro YAMASAKI Hirokazu TANAKA
Recently, complex orthogonal variable spreading factor (OVSF) codes based on polyphase orthogonal codes have been proposed to support multi-user/multi-rate data transmission services in synchronous direct-sequence code-division multiple access (DS-CDMA) systems. This study investigates the low signal-envelope fluctuation property of the complex OVSF codes in terms of transmission signal trajectories. In addition, a new method is proposed to suppress the envelope fluctuation more strongly at the expense of reducing the number of spreading sequences of the codes.
Shoichiro YAMASAKI Tomoko K. MATSUSHIMA Kyohei ONO Hirokazu TANAKA
The present study proposes a scheme in which variable-length orthogonal codes generated by combining inverse discrete Fourier transform matrices over a finite field multiplex user data into a multiplexed sequence and its sequence forms one or a plural number of codewords for Reed-Solomon coding. The proposed scheme realizes data multiplexing, error correction coding, and multi-rate transmitting at the same time. This study also shows a design example and its performance analysis of the proposed scheme.
Kento TAKABAYASHI Hirokazu TANAKA Chika SUGIMOTO Ryuji KOHNO
This paper proposes and investigates a multiplexing and error control scheme for Body Area Network (BAN). In February 2012, an international standard of WBAN, IEEE802.15.6, was published and it supports error control schemes. This standard also defines seven different QoS modes however, how to utilize them is not clearly specified. In this paper, an optimization method of the QoS is proposed. In order to utilize the QoS parameters, a multiplexing scheme is introduced. Then, the Hybrid ARQ in IEEE 802.15.6 is modified to employ decomposable codes and Weldon's ARQ protocol for more associations with channel conditions and required QoS. The proposed scheme has higher flexibility for optimizing the QoS parameters according to the required QoS.
Hirokazu TANAKA Sunmi KIM Takahiro OGAWA Miki HASEYAMA
A new spatial and temporal error concealment method for three-dimensional discrete wavelet transform (3D DWT) video coding is analyzed. 3D DWT video coding employing dispersive grouping (DG) and two-step error concealment is an efficient method in a packet loss channel [20],[21]. In the two-step error concealment method, the interpolations are only spatially applied however, higher efficiency of the interpolation can be expected by utilizing spatial and temporal similarities. In this paper, we propose an enhanced spatial and temporal error concealment method in order to achieve higher error concealment (EC) performance in packet loss networks. In the temporal error concealment method, structural similarity (SSIM) index is employed for inter group of pictures (GOP) EC and minimum mean square error (MMSE) is used for intra GOP EC. Experimental results show that the proposed method can obtain remarkable performance compared with the conventional methods.
Kotoku OMURA Shoichiro YAMASAKI Tomoko K. MATSUSHIMA Hirokazu TANAKA Miki HASEYAMA
Many studies have applied the three-dimensional discrete wavelet transform (3D DWT) to video coding. It is known that corruptions of the lowest frequency sub-band (LL) coefficients of 3D DWT severely affect the visual quality of video. Recently, we proposed an error resilient 3D DWT video coding method (the conventional method) that employs dispersive grouping and an error concealment (EC). The EC scheme of our conventional method adopts a replacement technique of the lost LL coefficients. In this paper, we propose a new 3D DWT video transmission method in order to enhance error resilience. The proposed method adopts an error correction scheme using invertible codes to protect LL coefficients. We use half-rate Reed-Solomon (RS) codes as invertible codes. Additionally, to improve performance by using the effect of interleave, we adopt a new configuration scheme at the RS encoding stage. The evaluation by computer simulation compares the performance of the proposed method with that of other EC methods, and indicates the advantage of the proposed method.
Hirokazu TANAKA Shoichiro YAMASAKI
A Generalized Symbol-rate-increased (GSRI) Pragmatic Trellis coded Type-I Hybrid ARQ based on a Selective-Repeat (SR) ARQ with multicopy (MC) retransmission (SR+MC scheme) for high speed mobile satellite communication system is analyzed. The SR+MC ARQ is a suitable scheme for mobile satellite systems and further improvement of the throughput performance can be expected by an additional combination of an error control coding. In this paper, we investigate the performance of the SR+MC scheme employing GSRI Pragmatic TCM. GSRI TC-MPSK can arbitrarily set the bandwidth expansion ratio keeping higher coding gain than conventional TCM scheme. Also Pragmatic TCM has an advantage in that the modulation level can be easily changeable. By changing the modulation level and the bandwidth expansion ratio, this scheme can optimize the performance according to the channel conditions. Numerical and simulation results show that the GSRI Trellis Coded Type-I Hybrid ARQ presents better performance than conventional Pragmatic Trellis Coded Type-I Hybrid ARQ.
Shigeki TAKAHASHI Takahiro OGAWA Hirokazu TANAKA Miki HASEYAMA
A novel error concealment method using a Kalman filter is presented in this paper. In order to successfully utilize the Kalman filter, its state transition and observation models that are suitable for the video error concealment are newly defined as follows. The state transition model represents the video decoding process by a motion-compensated prediction. Furthermore, the new observation model that represents an image blurring process is defined, and calculation of the Kalman gain becomes possible. The problem of the traditional methods is solved by using the Kalman filter in the proposed method, and accurate reconstruction of corrupted video frames is achieved. Consequently, an effective error concealment method using the Kalman filter is realized. Experimental results showed that the proposed method has better performance than that of traditional methods.
Hirokazu TANAKA Kyung Woon JANG Shoichiro YAMASAKI Miki HASEYAMA
In this paper, an error correction scheme suitable for MC-DS-CDMA system with bi-orthogonal modulation is proposed. The input sequence of a bi-orthogonal modulator consists of n - 1 bit code selection bit sequence and 1 bit sign bit sequence. In order to apply an efficient error correction code, the following points should be considered; (1) if the code selection bits can be protected sufficiently, the sign bit error can also be reduced sufficiently, (2) since a code selection bit sequence consists of n - 1 bits, employing a symbol error correcting code is more effective for encoding code selection bits, (3) the complexity of the error correction encoder and decoder implementations should be minimum. Based on these conditions, we propose to employ Reed-Solomon (RS) code for encoding the code selection bits and no error correction code for the sign bit. Additionally, detection algorithm at the bi-orthogonal demodulator is modified for compensating degradations of the sign bit error rate performance. The performance in an Additive White Gaussian Noise (AWGN) channel is evaluated by both theoretical analysis and computer simulations. The performance evaluations by simulations on multi-path fading channels are also shown. It is shown that the proposed scheme has remarkable improvement.