Author Search Result

[Author] Tomoko K. MATSUSHIMA(13hit)

1-13hit
  • Performance Improvement of Error-Resilient 3D DWT Video Transmission Using Invertible Codes

    Kotoku OMURA  Shoichiro YAMASAKI  Tomoko K. MATSUSHIMA  Hirokazu TANAKA  Miki HASEYAMA  

     
    PAPER-Video Coding

      Vol:
    E99-A No:12
      Page(s):
    2256-2265

    Many studies have applied the three-dimensional discrete wavelet transform (3D DWT) to video coding. It is known that corruptions of the lowest frequency sub-band (LL) coefficients of 3D DWT severely affect the visual quality of video. Recently, we proposed an error resilient 3D DWT video coding method (the conventional method) that employs dispersive grouping and an error concealment (EC). The EC scheme of our conventional method adopts a replacement technique of the lost LL coefficients. In this paper, we propose a new 3D DWT video transmission method in order to enhance error resilience. The proposed method adopts an error correction scheme using invertible codes to protect LL coefficients. We use half-rate Reed-Solomon (RS) codes as invertible codes. Additionally, to improve performance by using the effect of interleave, we adopt a new configuration scheme at the RS encoding stage. The evaluation by computer simulation compares the performance of the proposed method with that of other EC methods, and indicates the advantage of the proposed method.

  • Signature Codes to Remove Interference Light in Synchronous Optical Code-Division Multiple Access Systems Open Access

    Tomoko K. MATSUSHIMA  Shoichiro YAMASAKI  Kyohei ONO  

     
    PAPER-Coding Theory

      Pubricized:
    2021/05/06
      Vol:
    E104-A No:11
      Page(s):
    1619-1628

    This paper proposes a new class of signature codes for synchronous optical code-division multiple access (CDMA) and describes a general method for construction of the codes. The proposed codes can be obtained from generalized modified prime sequence codes (GMPSCs) based on extension fields GF(q), where q=pm, p is a prime number, and m is a positive integer. It has been reported that optical CDMA systems using GMPSCs remove not only multi-user interference but also optical interference (e.g., background light) with a constant intensity during a slot of length q2. Recently, the authors have reported that optical CDMA systems using GMPSCs also remove optical interference with intensity varying by blocks with a length of q. The proposed codes, referred to as p-chip codes in general and chip-pair codes in particular for the case of p=2, have the property of removing interference light with an intensity varying by shorter blocks with a length of p without requiring additional equipment. The present paper also investigates the algebraic properties and applications of the proposed codes.

  • Complex Orthogonal Variable Spreading Factor Codes Based on Polyphase Sequences Open Access

    Tomoko K. MATSUSHIMA  Shoichiro YAMASAKI  

     
    PAPER-communication

      Vol:
    E103-A No:10
      Page(s):
    1218-1226

    The direct sequence code division multiple access (DS-CDMA) technique is widely used in various communication systems. When adopting orthogonal variable spreading factor (OVSF) codes, DS-CDMA is particularly suitable for supporting multi-user/multi-rate data transmission services. A useful property of OVSF codes is that no two code sequences assigned to different users will ever interfere with each other, even if their spreading factors are different. Conventional OVSF codes are constructed based on binary orthogonal codes, called Walsh codes, and OVSF code sequences are binary sequences. In this paper, we propose new OVSF codes that are constructed based on polyphase orthogonal codes and consist of complex sequences in which each symbol is represented as a complex number. Construction of the proposed codes is based on a tree structure that is similar to conventional OVSF codes. Since the proposed codes are generalized versions of conventional OVSF codes, any conventional OVSF code can be presented as a special case of the proposed codes. Herein, we show the method used to construct the proposed OVSF codes, after which the orthogonality of the codes, including conventional OVSF codes, is investigated. Among the advantages of our proposed OVSF codes is that the spreading factor can be designed more flexibly in each layer than is possible with conventional OVSF codes. Furthermore, combination of the proposed code and a non-binary phase modulation is well suited to DS-CDMA systems where the level fluctuation of signal envelope is required to be suppressed.

  • Parallel Encoder and Decoder Architecture for Cyclic Codes

    Tomoko K. MATSUSHIMA  Toshiyasu MATSUSHIMA  Shigeichi HIRASAWA  

     
    PAPER-Coding Theory

      Vol:
    E79-A No:9
      Page(s):
    1313-1323

    Recently, the high-speed data transmission techniques that have been developed for communication systems have in turn necessitated the implementation of high-speed error correction circuits. Parallel processing has been found to be an effective method of speeding up operarions, since the maximum achievable clock frequency is generally bounded by the physical constraints of the circuit. This paper presents a parallel encoder and decoder architecture which can be applied to both binary and nonbinary cyclic codes. The architecture allows H symbols to be processed in parallel, where H is an arbitrary integer, although its hardware complexity is not proportional to the number of parallel symbols H. As an example, we investigate hardware complexity for a Reed-Solomon code and a binary BCH code. It is shown that both the hardware complexity and the delay for a parallel circuit is much less than that with the parallel operation of H conventional circuits. Although the only problem with this parallel architecture is that the encoder's critical path length increases with H, the proposed architecture is more efficient than a setup using H conventional circuits for high data rate applications. It is also suggested that a parallel Reed-Solomon encoder and decoder, which can keep up with optical transmission rates, i.e., several giga bits/sec, could be implemented on one LSI chip using current CMOS technology.

  • Optical CDMA Scheme Using Generalized Modified Prime Sequence Codes and Extended Bi-Orthogonal Codes Open Access

    Kyohei ONO  Shoichiro YAMASAKI  Shinichiro MIYAZAKI  Tomoko K. MATSUSHIMA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Pubricized:
    2021/03/08
      Vol:
    E104-A No:9
      Page(s):
    1329-1338

    Optical code-division multiple-access (CDMA) techniques provide multi-user data transmission services in optical wireless and fiber communication systems. Several signature codes, such as modified prime sequence codes (MPSCs), generalized MPSCs (GMPSCs) and modified pseudo-orthogonal M-sequence sets, have been proposed for synchronous optical CDMA systems. In this paper, a new scheme is proposed for synchronous optical CDMA to increase the number of users and, consequently, to increase the total data rate without increasing the chip rate. The proposed scheme employs a GMPSC and an extended bi-orthogonal code which is a unipolar code generated from a bipolar Walsh code. Comprehensive comparisons between the proposed scheme and several conventional schemes are shown. Moreover, bit error rate performance and energy efficiency of the proposed scheme are evaluated comparing with those of the conventional optical CDMA schemes under atmospheric propagation environment.

  • A Security Enhancement Technique for Wireless Communications Using Secret Sharing and Physical Layer Secrecy Transmission

    Shoichiro YAMASAKI  Tomoko K. MATSUSHIMA  

     
    PAPER-Network security

      Pubricized:
    2016/01/13
      Vol:
    E99-D No:4
      Page(s):
    830-838

    Secret sharing is a method of information protection for security. The information is divided into n shares and reconstructed from any k shares, but no knowledge of the information is revealed from k-1 shares. Physical layer security is a method of achieving favorable reception conditions at the destination terminal in wireless communications. In this study, we propose a security enhancement technique for wireless packet communications. The technique uses secret sharing and physical layer security to exchange a secret encryption key. The encryption key for packet information is set as the secret information in secret sharing, and the secret information is divided into n shares. Each share is located in the packet header. The base station transmits the packets to the destination terminal by using physical layer security based on precoded multi-antenna transmission. With this transmission scheme, the destination terminal can receive more than k shares without error and perfectly recover the secret information. In addition, an eavesdropper terminal can receive less than k-1 shares without error and recover no secret information. In this paper, we propose a protection technique using secret sharing based on systematic Reed-Solomon codes. The technique establishes an advantageous condition for the destination terminal to recover the secret information. The evaluation results by numerical analysis and computer simulation show the validity of the proposed technique.

  • Wireless Packet Communications Protected by Secret Sharing and Vector Coding

    Shoichiro YAMASAKI  Tomoko K. MATSUSHIMA  Shinichiro MIYAZAKI  Kotoku OMURA  Hirokazu TANAKA  

     
    PAPER-Communication Theory and Systems

      Vol:
    E100-A No:12
      Page(s):
    2680-2690

    Secret sharing is a method to protect information for security. The information is divided into n shares, and the information is reconstructed from any k shares but no knowledge of it is revealed from k-1 shares. Physical layer security is a method to yield a favorable receive condition to an authorized destination terminal in wireless communications based on multi-antenna transmission. In this study, we propose wireless packet communications protected by the secret sharing based on Reed Solomon coding and the physical layer security based on vector coding, which implements a single-antenna system and a multi-antenna system. Evaluation results show the validity of the proposed scheme.

  • Two-Dimensional Optical CDMA Systems Based on MWOOC with Generalized Prime Sequences

    Agus SUSILO  Tomoko K. MATSUSHIMA  Yasuaki TERAMACHI  

     
    PAPER-Spread Spectrum

      Vol:
    E95-A No:12
      Page(s):
    2160-2167

    Two-dimensional (2-D) codes for optical code-division multiple access (O-CDMA) systems can increase the number of subscribers and simultaneous users as compared to one-dimensional time-spreading codes. Multiple-wavelength optical orthogonal code (MWOOC), which is one of the 2-D codes, uses prime sequences as a wavelength-hopping code and an optical orthogonal code (OOC) as a time-spreading code. MWOOCs have some advantages over other 2-D codes especially in high bit-rate O-CDMA systems. The only drawback of MWOOC is that the performance degrades significantly when the number of wavelengths is not prime. Recently a generalized class of modified prime sequence codes (MPSCs), which includes the class of original MPSCs as its subclass, was presented. An important property of generalized MPSCs is that the codes can be constructed over not only prime fields but also extension fields. It has been shown that the correlation property of generalized MPSCs is the same as that of the original MPSCs. This paper investigates MWOOC with generalized prime sequences, which can be obtained in the process of generating the generalized MPSCs, as a wavelength-hopping code. Use of the generalized prime sequences can solve the nonprime problem of MWOOCs. The average error probability of the proposed MWOOCs is formulated theoretically and numerical results are compared with that of the original schemes. It is shown that nonprime numbers, such as 2m, 3m and 5m, can be also taken as the number of wavelengths without degrading the system performance in the proposed systems.

  • Parallel Architecture for Generalized LFSR in LSI Built-In Self Testing

    Tomoko K. MATSUSHIMA  Toshiyasu MATSUSHIMA  Shigeichi HIRASAWA  

     
    PAPER-Reliability and Fault Analysis

      Vol:
    E81-A No:6
      Page(s):
    1252-1261

    This paper presents a new architecture for multiple-input signature analyzers. The proposed signature analyzer with Hδ inputs is designed by parallelizing a GLFSR(δ,m), where δ is the number of input signals and m is the number of stages in the feedback shift register. The GLFSR, developed by Pradhan and Gupta, is a general framework for representing LFSR-based signature analyzers. The parallelization technique described in this paper can be applied to any kind of GLFSR signature analyzer, e. g. , SISRs, MISRs, multiple MISRs and MLFSRs. It is shown that a proposed signature analyzer with Hδ inputs requires less complex hardware than either single GLFSR(Hδ,m)s or a parallel construction of the H original GLFSR(δ,m)s. It is also shown that the proposed signature analyzer, while requiring simpler hardware, has comparable aliasing probability with analyzers using conventional GLFSRs for some CUT error models of the same test response length and test time. The proposed technique would be practical for testing CUTs with a large number of output sequences, since the test circuit occupies a smaller area on the LSI chip than the conventional multiple-input signature analyzers of comparable aliasing probability.

  • A Study on Multi-User Interference Cancellers for Synchronous Optical CDMA Systems — Decision Distance and Bit Error Rate —

    Tomoko K. MATSUSHIMA  Masaki KAKUYAMA  Yuya MURATA  Yasuaki TERAMACHI  Shoichiro YAMASAKI  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E100-A No:10
      Page(s):
    2135-2145

    Several kinds of techniques for excellent multi-user interference (MUI) cancellation have been proposed for direct-detection synchronous optical code division multiple access (OCDMA) systems. All these techniques utilize modified prime sequence codes (MPSCs) as signature codes and can remove MUI errors efficiently. In this paper, the features of three typical MUI cancellers are studied and compared in detail. The authors defined the parameter “decision distance” to show the feature of MUI cancellers. The bit error rate performance of each canceller is investigated by computer simulation and compared with that of the basic on-off keying (OOK) scheme without cancellation. Then, we investigate the relationship between the decision distance and the bit error rate performance. It is shown that every canceller has a better bit error rate performance than the basic OOK scheme. Especially, the equal weight orthogonal (EWO) scheme, whose decision distance is the largest, has the best error resistance property of the three MUI cancellers. The results show that the decision distance is a useful index to evaluate the error resistance property of MUI cancellation schemes.

  • Orthogonal Variable Spreading Factor Codes Suppressing Signal-Envelope Fluctuation

    Tomoko K. MATSUSHIMA  Shoichiro YAMASAKI  Hirokazu TANAKA  

     
    LETTER-Spread Spectrum Technologies and Applications

      Pubricized:
    2022/08/08
      Vol:
    E106-A No:3
      Page(s):
    445-449

    Recently, complex orthogonal variable spreading factor (OVSF) codes based on polyphase orthogonal codes have been proposed to support multi-user/multi-rate data transmission services in synchronous direct-sequence code-division multiple access (DS-CDMA) systems. This study investigates the low signal-envelope fluctuation property of the complex OVSF codes in terms of transmission signal trajectories. In addition, a new method is proposed to suppress the envelope fluctuation more strongly at the expense of reducing the number of spreading sequences of the codes.

  • Variable-Length Orthogonal Codes over Finite Fields Realizing Data Multiplexing and Error Correction Coding Simultaneously

    Shoichiro YAMASAKI  Tomoko K. MATSUSHIMA  Kyohei ONO  Hirokazu TANAKA  

     
    PAPER-Coding Theory and Techniques

      Pubricized:
    2023/09/26
      Vol:
    E107-A No:3
      Page(s):
    373-383

    The present study proposes a scheme in which variable-length orthogonal codes generated by combining inverse discrete Fourier transform matrices over a finite field multiplex user data into a multiplexed sequence and its sequence forms one or a plural number of codewords for Reed-Solomon coding. The proposed scheme realizes data multiplexing, error correction coding, and multi-rate transmitting at the same time. This study also shows a design example and its performance analysis of the proposed scheme.

  • Orthogonal Variable Spreading Factor Codes over Finite Fields Open Access

    Shoichiro YAMASAKI  Tomoko K. MATSUSHIMA  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2021/06/24
      Vol:
    E105-A No:1
      Page(s):
    44-52

    The present paper proposes orthogonal variable spreading factor codes over finite fields for multi-rate communications. The proposed codes have layered structures that combine sequences generated by discrete Fourier transforms over finite fields, and have various code lengths. The design method for the proposed codes and examples of the codes are shown.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.