1-6hit |
Takayoshi IWATA Hiroyuki MIYAZAKI Fumiyuki ADACHI
Scheduling imposes a trade-off between sum capacity and fairness among users. In some situations, fairness needs to be given the first priority. Therefore, a scheduling algorithm which can flexibly control sum capacity and fairness is desirable. In this paper, assuming the single-carrier frequency division multiple access (SC-FDMA), we propose three scheduling algorithms: modified max-map, proportional fairness (PF)-map, and max-min. The available subcarriers are grouped into a number of subcarrier-blocks each having the same number of subcarriers. The scheduling is done on a subcarrier-block by subcarrier-block basis to take advantage of the channel frequency-selectivity. The same number of non-contiguous subcarrier-blocks is assigned to selected users. The trade-off between sum capacity and fairness is controlled by changing the number of simultaneously scheduling users per time-slot. Capacity, fairness, and peak-to-average power ratio (PAPR) when using the proposed scheduling algorithms are examined by computer simulation.
Kazuhiro KIMURA Hiroyuki MIYAZAKI Tatsunori OBARA Fumiyuki ADACHI
2-time slot cooperative relay can be used to increase the cell-edge throughput. Adaptive data modulation further improves the throughput. In this paper, we introduce adaptive modulation to single-carrier (SC) cooperative decode-and-forward (DF) relay. The best modulation combination for mobile-terminal (MT)-relay station (RS) and RS-base station (BS) links is determined for the given local average signal-to-noise power ratios (SNRs) of MT-BS, MT-RS and RS-BS links. According to the modulation combination, the ratio of time slot length of the MT-RS link (first time slot) and the RS-BS link (second time slot) is changed. It is shown by computer simulation that the use of adaptive modulation can achieve higher throughput than fixed modulation and reduces by about 9dB the required normalized total transmit SNR for a 10%-outage throughput of 0.8 bps/Hz compared to direct transmission.
Fumiyuki ADACHI Amnart BOONKAJAY Yuta SEKI Tomoyuki SAITO Shinya KUMAGAI Hiroyuki MIYAZAKI
In this paper, the recent advances in cooperative distributed antenna transmission (CDAT) are introduced for spatial diversity and multi-user spatial multiplexing in 5G mobile communications network. CDAT is an advanced version of the coordinated multi-point (CoMP) transmission. Space-time block coded transmit diversity (STBC-TD) for spatial diversity and minimum mean square error filtering combined with singular value decomposition (MMSE-SVD) for multi-user spatial multiplexing are described under the presence of co-channel interference from adjacent macro-cells. Blind selected mapping (blind SLM) which requires no side information transmission is introduced in order to suppress the increased peak-to-average signal power ratio (PAPR) of the transmit signals when CDAT is applied. Some computer simulation results are presented to confirm the effectiveness of CDAT techniques.
Hiroyuki MIYAZAKI Fumiyuki ADACHI
Single-carrier (SC) transmission with space-time block coded (STBC) transmit diversity can achieve good bit error rate (BER) performance. However, in a high mobility environment, the STBC codeword orthogonality is distorted and as consequence, the BER performance is degraded by the interference caused by the orthogonality distortion of STBC codeword. In this paper, we proposed a novel frequency-domain equalization (FDE) for SC-STBC transmit diversity in doubly selective fading channel. Multiple FDE weight matrices, each associated with a different code block, are jointly optimized based on the minimum mean square error (MMSE) criterion taking into account not only channel frequency variation but also channel time variation over the STBC codeword. Computer simulations confirm that the proposed robust FDE achieves BER performance superior to conventional FDE, which was designed based on the assumption of a quasi-static fading.
Hiroyuki MIYAZAKI Fumiyuki ADACHI
In this paper, we propose a transmit multi-block frequency-domain equalization (MB-FDE) for frequency-domain space-time block coded joint transmit/receive diversity (FD-STBC-JTRD). Noting that a STBC codeword consists of multiple coded blocks, the transmit MB-FDE uses the multiple transmit FDE weight matrices, each associated with each coded block. Both single-carrier (SC) transmission and orthogonal frequency-division multiplexing (OFDM) transmission are considered. For SC transmission, the transmit MB-FDE weight matrices are jointly optimized so as to minimize the mean square error (MSE) between the transmit signal before STBC encoding and the received signal after STBC decoding. For OFDM transmission, they are jointly optimized so as to maximize the received signal-to-noise power ratio (SNR) after STBC decoding. We show by theoretical analysis that the proposed transmit MB-FDE can achieve 1/RSTBC times higher received SNR than the conventional transmit single-block FDE (SB-FDE), where RSTBC represents the code rate of STBC. It is confirmed by computer simulation that, when more than 2 receive antennas are used, MB-FDE can always achieve better BER performance than SB-FDE irrespective of the number of transmit antennas, and the channel frequency-selectivity.
Hiroyuki MIYAZAKI Tatsunori OBARA Fumiyuki ADACHI
In this paper, joint transmit/receive frequency-domain equalization (FDE) is proposed for analog network coded (ANC) single-carrier (SC) bi-directional multi-antenna relay. In the proposed scheme, diversity transmission using transmit FDE is performed at relay station (RS) equipped with multiple antennas while receive FDE is carried out at base station (BS) and mobile terminal (MT) both equipped with single antenna. The transmit and receive FDE weights are jointly optimized so as to minimize the end-to-end mean square error (MSE). We evaluate, by computer simulation, the throughput performance and show that the joint transmit/receive FDE obtains the spatial and frequency diversity gains and accordingly achieve better throughput performance compared to either the transmit FDE only or the receive FDE only. It is also shown that ANC SC bi-directional multi-antenna relay can extend the communication coverage area for the given required throughput compared to conventional direct transmission.