Scheduling imposes a trade-off between sum capacity and fairness among users. In some situations, fairness needs to be given the first priority. Therefore, a scheduling algorithm which can flexibly control sum capacity and fairness is desirable. In this paper, assuming the single-carrier frequency division multiple access (SC-FDMA), we propose three scheduling algorithms: modified max-map, proportional fairness (PF)-map, and max-min. The available subcarriers are grouped into a number of subcarrier-blocks each having the same number of subcarriers. The scheduling is done on a subcarrier-block by subcarrier-block basis to take advantage of the channel frequency-selectivity. The same number of non-contiguous subcarrier-blocks is assigned to selected users. The trade-off between sum capacity and fairness is controlled by changing the number of simultaneously scheduling users per time-slot. Capacity, fairness, and peak-to-average power ratio (PAPR) when using the proposed scheduling algorithms are examined by computer simulation.
Takayoshi IWATA
Tohoku University
Hiroyuki MIYAZAKI
Tohoku University
Fumiyuki ADACHI
Tohoku University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Takayoshi IWATA, Hiroyuki MIYAZAKI, Fumiyuki ADACHI, "Capacity-Fairness Controllable Scheduling Algorithms for Single-Carrier FDMA" in IEICE TRANSACTIONS on Communications,
vol. E97-B, no. 7, pp. 1474-1482, July 2014, doi: 10.1587/transcom.E97.B.1474.
Abstract: Scheduling imposes a trade-off between sum capacity and fairness among users. In some situations, fairness needs to be given the first priority. Therefore, a scheduling algorithm which can flexibly control sum capacity and fairness is desirable. In this paper, assuming the single-carrier frequency division multiple access (SC-FDMA), we propose three scheduling algorithms: modified max-map, proportional fairness (PF)-map, and max-min. The available subcarriers are grouped into a number of subcarrier-blocks each having the same number of subcarriers. The scheduling is done on a subcarrier-block by subcarrier-block basis to take advantage of the channel frequency-selectivity. The same number of non-contiguous subcarrier-blocks is assigned to selected users. The trade-off between sum capacity and fairness is controlled by changing the number of simultaneously scheduling users per time-slot. Capacity, fairness, and peak-to-average power ratio (PAPR) when using the proposed scheduling algorithms are examined by computer simulation.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/transcom.E97.B.1474/_p
Copy
@ARTICLE{e97-b_7_1474,
author={Takayoshi IWATA, Hiroyuki MIYAZAKI, Fumiyuki ADACHI, },
journal={IEICE TRANSACTIONS on Communications},
title={Capacity-Fairness Controllable Scheduling Algorithms for Single-Carrier FDMA},
year={2014},
volume={E97-B},
number={7},
pages={1474-1482},
abstract={Scheduling imposes a trade-off between sum capacity and fairness among users. In some situations, fairness needs to be given the first priority. Therefore, a scheduling algorithm which can flexibly control sum capacity and fairness is desirable. In this paper, assuming the single-carrier frequency division multiple access (SC-FDMA), we propose three scheduling algorithms: modified max-map, proportional fairness (PF)-map, and max-min. The available subcarriers are grouped into a number of subcarrier-blocks each having the same number of subcarriers. The scheduling is done on a subcarrier-block by subcarrier-block basis to take advantage of the channel frequency-selectivity. The same number of non-contiguous subcarrier-blocks is assigned to selected users. The trade-off between sum capacity and fairness is controlled by changing the number of simultaneously scheduling users per time-slot. Capacity, fairness, and peak-to-average power ratio (PAPR) when using the proposed scheduling algorithms are examined by computer simulation.},
keywords={},
doi={10.1587/transcom.E97.B.1474},
ISSN={1745-1345},
month={July},}
Copy
TY - JOUR
TI - Capacity-Fairness Controllable Scheduling Algorithms for Single-Carrier FDMA
T2 - IEICE TRANSACTIONS on Communications
SP - 1474
EP - 1482
AU - Takayoshi IWATA
AU - Hiroyuki MIYAZAKI
AU - Fumiyuki ADACHI
PY - 2014
DO - 10.1587/transcom.E97.B.1474
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E97-B
IS - 7
JA - IEICE TRANSACTIONS on Communications
Y1 - July 2014
AB - Scheduling imposes a trade-off between sum capacity and fairness among users. In some situations, fairness needs to be given the first priority. Therefore, a scheduling algorithm which can flexibly control sum capacity and fairness is desirable. In this paper, assuming the single-carrier frequency division multiple access (SC-FDMA), we propose three scheduling algorithms: modified max-map, proportional fairness (PF)-map, and max-min. The available subcarriers are grouped into a number of subcarrier-blocks each having the same number of subcarriers. The scheduling is done on a subcarrier-block by subcarrier-block basis to take advantage of the channel frequency-selectivity. The same number of non-contiguous subcarrier-blocks is assigned to selected users. The trade-off between sum capacity and fairness is controlled by changing the number of simultaneously scheduling users per time-slot. Capacity, fairness, and peak-to-average power ratio (PAPR) when using the proposed scheduling algorithms are examined by computer simulation.
ER -