1-6hit |
Zhongxiao WANG Wenfeng QI Huajin CHEN
Recently nonlinear feedback shift registers (NFSRs) have frequently been used as basic building blocks for stream ciphers. A major problem concerning NFSRs is to construct NFSRs which generate de Bruijn sequences, namely maximum period sequences. In this paper, we present a new necessary condition for NFSRs to generate de Bruijn sequences. The new condition can not be deduced from the previously proposed necessary conditions. It is shown that the number of NFSRs whose feedback functions satisfy all the previous necessary conditions but not the new one is very large.
Wei BAI Yuli ZHANG Meng WANG Jin CHEN Han JIANG Zhan GAO Donglin JIAO
This paper investigates the spectrum allocation problem. Under the current spectrum management mode, large amount of spectrum resource is wasted due to uncertainty of user's demand. To reduce the impact of uncertainty, a presale mechanism is designed based on spectrum pool. In this mechanism, the spectrum manager provides spectrum resource at a favorable price for presale aiming at sharing with user the risk caused by uncertainty of demand. Because of the hierarchical characteristic, we build a spectrum market Stackelberg game, in which the manager acts as leader and user as follower. Then proof of the uniqueness and optimality of Stackelberg Equilibrium is given. Simulation results show the presale mechanism can promote profits for both sides and reduce temporary scheduling.
In recently year, the analysis of power management becomes more important. It is difficult to obtain the maximum power because this is NP-complete. For an n-input circuit, there are 22n different input patterns to be considered. There are two major methods for this problem. First method is to generate input patterns to obtain the maximal power by simulating these generated patterns. This method is called pattern based. The other one uses probability method to estimate the power density of each node of a circuit to calculate the maximal power. In this paper, we use a pattern based method to estimate the maximal power. This method is better than that of probability for the simulation of power activity. In practical applications, these generated patterns can be applied and observe the activity of a circuit. These simulated data can be used to examined the critical paths for performance optimization. A simulated annealing algorithm is proposed to search input patterns for maximum power. Firstly, it transforms this problem into an optimization problem to adapt the simulated annealing method. In this method, there are three strategies for generating the next input patterns, called neighborhood. In the first strategy, it generates the next input pattern by changing the status of all input nodes. In the second strategy, some input nodes are selected and changed randomly.
Liu LIU Cheng TAO Jiahui QIU Houjin CHEN
In the channel measurement and characterization, selecting a suitable excitation signal for a specified scenario is the primary task. This letter describes several selecting criteria of the excitation signal for channel sounding. And then the popular types of probing signals are addressed and through simulations their accuracy performances are compared in time-varying channels. The conclusion is the Constant Amplitude Zero Auto-Correlation (CAZAC) sequence yields better results in time-varying scenarios.
Huajin CHEN Wenfeng Qi Chuangui MA
In this paper, we put forward a new method to construct n-variable Boolean functions with optimal algebraic immunity based on the factorization of n. Computer investigations for small values of n indicate that a class of Boolean functions constructed by the new method has a very good nonlinearity and also a good behavior against fast algebraic attacks.
Molin CHANG Wang-Jin CHEN Jyh-Herng WANG Wu-Shiung FENG
The slope of transient waveform is dominated by the characteristics of the discharging (or charging) path, including the path topology, the sizes and the states of MOS transistors. The slope value of transient waveform can be obtained by calculating the equivalent RC time constant of the evaluated cluster circuit, and it can be obtained efficiently by traversing the tree recursively. However, bottleneck effect always exists in the charging/discharging path and plays an important role on the charging/discharging behavior of the output. If neglect the effect, the waveform approximation technique used in BTS will give rise to a larger error in some cases. Therefore, we propose an algorithm to solve this problem.