1-2hit |
Jingyu XU Xianlong HONG Tong JING
Timing optimization is an important goal of global routing in deep submicron era. To guarantee the timing performance of the circuit, merely adopting topology optimization becomes inadequate. In this paper, we present an efficient timing-driven global routing algorithm with buffer insertion. Our approach is capable of applying topological-based timing optimization and buffer insertion simultaneously with routablity considerations. Compared with previous works, we efficiently solve the timing issues under a limited buffer usage. The experimental results have demonstrated significant delay improvement within short runtime with very small number of buffers inserted.
Jingyu XU Xianlong HONG Tong JING Yici CAI Jun GU
As the CMOS technology enters the very deep submicron era, inter-wire coupling capacitance becomes the dominant part of load capacitance. The coupling effects have brought new challenges to routing algorithms on both delay estimation and optimization. In this paper, we propose a timing-driven global routing algorithm with consideration of coupling effects. Our two-phase algorithm based on timing-relax method includes a heuristic Steiner tree algorithm to guarantee the timing performance of the initial solution and an optimization algorithm based on coupling-effect-transference. Experimental results are given to demonstrate the efficiency and accuracy of the algorithm.