1-2hit |
Kampol WORADIT Matthieu GUYOT Pisit VANICHCHANUNT Poompat SAENGUDOMLERT Lunchakorn WUTTISITTIKULKIJ
While the problem of multicast routing and wavelength assignment (MC-RWA) in optical wavelength division multiplexing (WDM) networks has been investigated, relatively few researchers have considered network survivability for multicasting. This paper provides an optimization framework to solve the MC-RWA problem in a multi-fiber WDM network that can recover from a single-link failure with shared protection. Using the light-tree (LT) concept to support multicast sessions, we consider two protection strategies that try to reduce service disruptions after a link failure. The first strategy, called light-tree reconfiguration (LTR) protection, computes a new multicast LT for each session affected by the failure. The second strategy, called optical branch reconfiguration (OBR) protection, tries to restore a logical connection between two adjacent multicast members disconnected by the failure. To solve the MC-RWA problem optimally, we propose an integer linear programming (ILP) formulation that minimizes the total number of fibers required for both working and backup traffic. The ILP formulation takes into account joint routing of working and backup traffic, the wavelength continuity constraint, and the limited splitting degree of multicast-capable optical cross-connects (MC-OXCs). After showing some numerical results for optimal solutions, we propose heuristic algorithms that reduce the computational complexity and make the problem solvable for large networks. Numerical results suggest that the proposed heuristic yields efficient solutions compared to optimal solutions obtained from exact optimization.
Tony Q. S. QUEK Kampol WORADIT Hyundong SHIN Zander LEI
Coordinated multi-point processing at multiple base stations can improve coverage, system throughput, and cell-edge throughput for future cellular systems. In this paper, we study the coordinated reception of transmitted signals at multiple MIMO base stations to exploit cooperative diversity. In particular, we propose to employ cooperative multicell automatic repeat request (ARQ) protocol via backhaul links. The attractiveness of this protocol is that processing between coordinated base stations can be made completely transparent to the mobile user, and it improves the mobile user's link reliability and throughput significantly compared to noncooperative ARQ protocol. In our proposed protocol, we consider the scenario where the multicell processing involves one of the following three schemes: decode-and-forward, amplify-and-forward, and compress-and-forward schemes. We derive the average packet error rate and throughput for these cooperative multicell ARQ protocols. Numerical results show that the cooperative multicell ARQ protocols are promising in terms of average packet error rate and throughput. Furthermore, we show that the degree of improvement depends on the type of cooperative multicell ARQ protocol employed and the operating average signal-to-noise ratio of the main and backhaul links.