1-2hit |
Kampol WORADIT Matthieu GUYOT Pisit VANICHCHANUNT Poompat SAENGUDOMLERT Lunchakorn WUTTISITTIKULKIJ
While the problem of multicast routing and wavelength assignment (MC-RWA) in optical wavelength division multiplexing (WDM) networks has been investigated, relatively few researchers have considered network survivability for multicasting. This paper provides an optimization framework to solve the MC-RWA problem in a multi-fiber WDM network that can recover from a single-link failure with shared protection. Using the light-tree (LT) concept to support multicast sessions, we consider two protection strategies that try to reduce service disruptions after a link failure. The first strategy, called light-tree reconfiguration (LTR) protection, computes a new multicast LT for each session affected by the failure. The second strategy, called optical branch reconfiguration (OBR) protection, tries to restore a logical connection between two adjacent multicast members disconnected by the failure. To solve the MC-RWA problem optimally, we propose an integer linear programming (ILP) formulation that minimizes the total number of fibers required for both working and backup traffic. The ILP formulation takes into account joint routing of working and backup traffic, the wavelength continuity constraint, and the limited splitting degree of multicast-capable optical cross-connects (MC-OXCs). After showing some numerical results for optimal solutions, we propose heuristic algorithms that reduce the computational complexity and make the problem solvable for large networks. Numerical results suggest that the proposed heuristic yields efficient solutions compared to optimal solutions obtained from exact optimization.
Norrarat WATTANAMONGKHOL Warakorn SRICHAVENGSUP Pisit VANICHCHANUNT Robithoh ANNUR Jun-ichi TAKADA Lunchakorn WUTTISITTIKULKIJ
In a shared medium communication system, mobile users contend for channel access according to a given set of rules to avoid collisions and achieve efficient use of the medium. If one or more users do not comply with the agree rules either due to selfish or malicious behaviours, they will cause some impacts on the system performance, especially to the well-behaved users. In this paper, we consider the problem of user misbehaviours on the performance of a wireless infrastructure-based network using reservation-based MAC protocols. Key misbehaving strategies possible in such a network are identified and explained. To quantify the impact of these misbehaviours upon the network performance, three different misbehaving scenarios are developed to allow a systematic investigation of each misbehaving strategy. For each scenario, we have derived mathematical formulations for evaluating and analyzing the key performance metrics, i.e., probabilities of success of well-behaved and misbehaved users and the fairness index. Numerical results show that the presence of misbehaviours can cause different levels of damage depending on the misbehavior strategy used. The combined multi-token and increasing permission probability strategies where the misbehaved user selfishly accesses the channel more times and with higher probabilities than allowed is shown to cause the most severe impairment of performance and fairness.