1-2hit |
Kenichiro NAKAMATSU Masao NAGASE Toshinari ICHIHASHI Kazuhiro KANDA Yuichi HARUYAMA Takashi KAITO Shinji MATSUI
Our investigation of diamond-like carbon (DLC) nano-springs with a 130 nm spring-section diameter, which were fabricated by focused-ion-beam chemical vapor deposition (FIB-CVD), showed for the first time that nanosprings can be stretched. We observed large displacements of the FIB-CVD nanosprings using in situ optical microscopy; in other words, the nanosprings showed behavior similar to that of macroscale springs. In addition, we investigated the dependence of the spring constant of DLC nanosprings on spring diameter. The spring constants, measured using commercially available cantilevers, ranged from 0.47 to 0.07 N/m. The diameter dependence of spring constant can be accurately expressed by the conventional formula for a coil spring. The estimated shear modulus of the DLC nano-springs was about 70 GPa. This value is very close to the value of conventional coil springs made of steel. Furthermore, we measured the stiffness of a DLC nanospring annealed at 1000 in vacuum. The stiffness was decreased to approximately half of the stiffness of the nanospring without annealing.
Akira HEYA Naoto MATSUO Kazuhiro KANDA
A novel activation method for a B dopant implanted in a Si substrate using a soft X-ray undulator was examined. As the photon energy of the irradiated soft X-ray approached the energy of the core level of Si 2p, the activation ratio increased. The effect of soft X-ray irradiation on B activation was remarkable at temperatures lower than 400°C. The activation energy of B activation by soft X-ray irradiation (0.06 eV) was lower than that of B activation by furnace annealing (0.18 eV). The activation of the B dopant by soft X-ray irradiation occurs at low temperature, although the activation ratio shows small values of 6.2×10-3 at 110°C. The activation by soft X-ray is caused not only by thermal effects, but also electron excitation and atomic movement.