Author Search Result

[Author] Naoto MATSUO(7hit)

1-7hit
  • Role of Hydrogen in Polycrystallne Si by Excimer Laser Annealing

    Naoya KAWAMOTO  Naoto MATSUO  Atsushi MASUDA  Yoshitaka KITAMON  Hideki MATSUMURA  Yasunori HARADA  Tadaki MIYOSHI  Hiroki HAMADA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E88-C No:2
      Page(s):
    241-246

    The role of hydrogen in the Si film during excimer laser annealing (ELA) has been successfully studied by using a novel sample structure, which is stacked by a-Si film and SiN film. Hydrogen contents in the Si films during ELA are changed by preparing samples with hydrogen content of 2.3-8.2 at.% in the SiN films with a use of catalytic (Cat)-CVD method. For the low concentration of hydrogens in the Si film, the grain size increases by decreasing hydrogen concentration in the Si film, and the internal stress of the film decreases as increasing the shot number. For the high concentration of hydrogens in the Si film, hydrogen burst was observed at 500 mJ/cm2 and the dependence of the internal stress on the shot number becomes weak even at 318 mJ/cm2. These phenomena can be understood basically using the secondary grain growth mechanism, which we have proposed.

  • Low-Temperature Activation in Boron Ion-Implanted Silicon by Soft X-Ray Irradiation

    Akira HEYA  Naoto MATSUO  Kazuhiro KANDA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E99-C No:4
      Page(s):
    474-480

    A novel activation method for a B dopant implanted in a Si substrate using a soft X-ray undulator was examined. As the photon energy of the irradiated soft X-ray approached the energy of the core level of Si 2p, the activation ratio increased. The effect of soft X-ray irradiation on B activation was remarkable at temperatures lower than 400°C. The activation energy of B activation by soft X-ray irradiation (0.06 eV) was lower than that of B activation by furnace annealing (0.18 eV). The activation of the B dopant by soft X-ray irradiation occurs at low temperature, although the activation ratio shows small values of 6.2×10-3 at 110°C. The activation by soft X-ray is caused not only by thermal effects, but also electron excitation and atomic movement.

  • Influence of the Gate Voltage or the Base Pair Ratio Modulation on the λ-DNA FET Performance

    Naoto MATSUO  Akira HEYA  Kazushige YAMANA  Koji SUMITOMO  Tetsuo TABEI  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2023/08/08
      Vol:
    E107-C No:3
      Page(s):
    76-79

    The influence of the gate voltage or base pair ratio modulation on the λ-DNA FET performance was examined. The result of the gate voltage modulation indicated that the captured electrons in the guanine base of the λ-DNA molecules greatly influenced the Id-Vd characteristics, and that of the base pair ratio modulation indicated that the tendency of the conductivity was partly clarified by considering the activation energy of holes and electrons and the length and numbers of the serial AT or GC sequences over which the holes or electrons jumped. In addition, the influence of the dimensionality of the DNA molecule on the conductivity was discussed theoretically.

  • Ambipolar Conduction of λ-DNA Transistor Fabricated on SiO2/Si Structure

    Naoto MATSUO  Kazuki YOSHIDA  Koji SUMITOMO  Kazushige YAMANA  Tetsuo TABEI  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2022/01/26
      Vol:
    E105-C No:8
      Page(s):
    369-374

    This paper reports on the ambipolar conduction for the λ-Deoxyribonucleic Acid (DNA) field effect transistor (FET) with 450, 400 and 250 base pair experimentally and theoretically. It was found that the drain current of the p-type DNA/Si FET increased as the ratio of the guanine-cytosine (GC) pair increased and that of the n-type DNA/Si FET decreased as the ratio of the adenine-thymine (AT) pair decreased, and the ratio of the GC pair and AT pair was controlled by the total number of the base pair. In addition, it was found that the hole conduction mechanism of the 400 bp DNA/Si FET was polaron hopping and its activation energy was 0.13eV. By considering the electron affinity of the adenine, thymine, guanine, and cytosine, the ambipolar characteristics of the DNA/Si FET was understood. The holes are injected to the guanine base for the negative gate voltage, and the electrons are injected to the adenine, thymine, and cytosine for the positive gate voltage.

  • Improvement of Hump Phenomenon of Thin-Film Transistor by SiNX Film

    Takahiro KOBAYASHI  Naoto MATSUO  Akira HEYA  Shin YOKOYAMA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E97-C No:11
      Page(s):
    1112-1116

    It is clarified that the SiN$_{mathrm{X}}$ film with a thickness of 1.7 nm, which was formed at the interface between the poly-Si source/drain and Al layer, suppresses the hump phenomenon of TFT with a channel length of 10, $mu $m. The mechanism of the hump suppression by this structure is discussed. It is thought that the fixed charge in the SiN$_{mathrm{X}}$ film suppresses the formation of the parasitic channel in the poly-Si edge by the Coulomb repulsion.

  • Properties of SiO2 Surface and Pentacene OTFT Subjected to Atomic Hydrogen Annealing

    Akira HEYA  Naoto MATSUO  

     
    BRIEF PAPER

      Vol:
    E93-C No:10
      Page(s):
    1516-1517

    Effects of atomic hydrogen annealing (AHA) on the film properties and the electrical characteristics of pentacene organic thin-film transistors (OTFTs) are investigated. The surface energy of SiO2 surface and grain size of pentacene film were decreased with increasing AHA treatment time. For the treatment time of 300 s, pentacene film showed the (00l) and (011') orientation and high carrier mobility in spite of small crystal grain.

  • Silicon Resonant Tunneling Metal-Oxide-Semiconductor Transistor for Sub-0.1 µm Era

    Naoto MATSUO  Yoshinori TAKAMI  Takahiro NOZAKI  Hiroki HAMADA  

     
    PAPER

      Vol:
    E85-C No:5
      Page(s):
    1086-1090

    The characteristics of the Si resonant tunneling metal-oxide-semiconductor transistor (SRTMOST), which has double-barriers at the both edges of the channel, is examined from viewpoints of the substitution for conventional metal-oxide-semiconductor field-effect transistor (MOSFET) in the sub-0.1 µm era. The influence of the double-barriers on the suppression of the drain currents at the gate-off condition is discussed, and the feasibility of the three-valued logic circuit which is composed of the p-MOSFET and the n-SRTMOST is also shown theoretically.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.